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ABSTRACT

In real-world data processing pipelines or data flows, data are of-
ten processed by many modules, potentially written by multiple
developers. As bugs are introduced, it may be relatively easy to
identify errors in the final outputs. However, tracing the errors
backwards to their origin in the pipeline in order to identify and fix
the relevant faulty module is a difficult and time-consuming task in
practice. We built WaYFLOW to help users localize which modules
in the pipeline are propagating errors by automatically generating
explanations: simple predicates that zero in on the most relevant
aspects of the errors within the data flows. We describe WayFLow
and present a user study that shows how explanations are useful
in helping users identify errors in data flows.
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1 INTRODUCTION

Nowadays, large and complex data processing data flows that inte-
grate, extract, and transform data from multiple sources are com-
monplace [1, 7, 21]. These data flows engage different user groups:
multiple developers contribute and update different modules within
a single data flow, systems administrators deploy the data flow, and
data analysts and decision makers utilize the outputs of the data
flow once deployed in a production or serving environment. Dur-
ing serving, it is the data analyst who often detects the presence
of errors through suspicious outputs and kickstarts the arduous
and time-consuming task of debugging. Correctly routing the bug
with sufficient information to the appropriate development team
is essential to its timely handling. These end-users, however, are
not familiar with each module’s code-base [9] and tracing the er-
ror backwards to its origin is often difficult. End-users also often
struggle to conceive possible explanations for the failure, even af-
ter suspecting a certain module to be the cause [9]. Furthermore,
decision makers and data analysts often prioritize other high-value
external goals over software reliability [9] and may not spend the
time to accurately determine and explain the error.

Consequently, designing a tool that can help end-users localize
and explain faults from a few error examples without requiring
module introspection is essential, albeit challenging. Motivated by
recent research in the area of statistical debugging [11], as well as
in explaining errors and outliers in relational queries [19], machine
learning models [6] and data sources [18], we built and evaluated
an interactive tool, WHYFLOW, that supports data flow debugging
via labeling some of its incorrect outputs.
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Given fine-grained provenance of a data flow and a set of incor-
rect outputs, WHYFLOW synthesizes explanations at each module:
predicates that best capture flows with incorrect output. The user
can then examine these explanations to determine which one best
describes the faulty behavior and, subsequently, which module is
the most likely source of error. We created WuyFLow adhering to
the following design principles:

(1) Minimal Tuning & Code Introspection. An end-user, who may
be agnostic to the underlying code operations of a data flow,
should be able to label a sample of the output datapoints and
accurately diagnose the errors propagating from upstream.

(2) Surfacing Features of Incorrect Data Flows in a Visually Per-
ceptible Fashion. Data flow and provenance visualizations
should highlight characteristic differences between the in-
correct data flows and the residual data flows, both locally
at the code module level, and globally at the data flow level.

(3) Concise, Sensitive and Specific Error Explanations. Explana-
tions of the incorrect data flow should be simple and intuitive
for an end-user to understand yet expressive enough. Ulti-
mately, explanations serve two purposes: (1) communication
or helping users provide a clear and correct description of an
error’s behavior and (2) diagnosis or helping users identify
the source and cause of an error.

1.1 Motivating Use Case

We motivate our work by describing a typical data flow and poten-
tial error scenarios from a large retail chain with multiple stores
across the US. Upper management might be interested in identify-
ing stores with unusual customer behavior such as unusually high
rates of purchase returns. The development team constructs a data
flow that (1) integrates individual sale and customer records from
multiple stores, (2) transforms and cleans the data through a com-
plex sequence of modules, and (3) produces the final dashboards
and reports for the management team.

End-users, or store managers, can sanity check these reports.
Imagine a manager of such a flagged store — one with a high count
of problematic customers — who believes that there actually should
be no unusually high purchase return patterns. She notices several
consistent, regular customers who should not belong in a list of
problematic customers and passes this information back to the data
flow development team.

At this point, an analysis of the entire data flow is required to
track down the spurious problematic customer entries. Any of the
following errors (or others) could have occurred:

(1) Data scan errors: A source table that tracks customer pur-

chase returns had data entry errors with 100x higher number
of returns for some customers.
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Figure 1: The interface and backend components of
WayFLow and the various user tasks they support.

(2) Filter Errors: Certain purchases, stores or customer groups
should have been excluded but filter errors such as using ‘>’
instead of >, or incorrectly set filter thresholds.

(3) Join Errors: Joining tables on wrong fields or using outer
instead of inner joins resulted in including customers that
did not even shop at a given store showing up in that store’s
customer returns report.

WaYFLOW enables the end-users, e.g. the store managers, to
visually examine the data flows and the provenance. It also synthe-
sizes error explanations at different modules from incorrect output
labels. These explanations, combined with the end-users’ domain
expertise can help the debugger more accurately identify the cause
of the error in the data flow, allowing developers to fix the actual
source of the error.

The main contributions of this work are: (1) WHYFLOW, an inter-
active tool tailored for analyzing errors in data flows (Figure 2), (2)
a user study demonstrating how explanations are useful in helping
users identify the source of errors in data flows, and (3) a scalable
method for generating, clustering, and ranking explanations.

1.2 Overview

In the course of debugging a data flow with WaYFLOW, an end-user
performs three primary tasks: (1) understanding the data flow; (2)
examining error flows by (a) labeling erroneous outputs and then
(b) analyzing how code modules within the data flow contribute to
error flows; and (3) diagnosing errors with the help of explanations.
Figure 1 illustrates how WHYFLOW supports each of these tasks
through its interface and backend components. In this paper, we
describe WHYFLOW and present a user study of WHYFLOw showing
how explanations are useful in debugging errors in data flows.

2 WHYFLOW INTERFACE AND LABELING
2.1 Data Flow Visualization

A data flow is an acyclic graph, where each node takes in sets of
tuples from one of more source nodes and outputs a set of tuples.
Figure 2 visualizes each data flow using the common workflow
graph metaphor: nodes represent modules and edges represent
datapoints that flow from one module to another.

WayFLow computes and stores offline the fine-grained why-
provenance [4] for each data flow using strategies similar to
Perm [8]. To ensure interactive performance, WaYFLOW randomly
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samples the final outputs and only presents the provenance data
that produce these outputs. If a handful (10s to 100s) of labels is
given, we balance the labeled and unlabeled datapoints by under-
sampling the unlabeled datapoints.

2.2 Error Labeling

Users are required to label incorrect final data points, which are
presented in the data flow visualization in red. All other datapoints
are labeled as unknown. Explanations of the errors are generated
to capture incorrect data points. In an initial design of WaHYFLOW,
users were able to label both correct and incorrect. However, we
relaxed our requirement to have correct output labels, as users
often struggled with questions such as ‘how many correct datapoints
should I provide?’ or ‘can I simply label everything other than the
error datapoints that I selected as correct?’.

2.2.1 Label Back-Propagation. Back-propagating error labels from
the outputs of leaf modules in a data flow to upstream modules
allows us to assess the likelihood of a specific module being the
source of an error by evaluating its immediate outputs. We label
each intermediate datapoint by how much it contributes to the
final errors. We back-propagate a numeric value or the degree of
error of each datapoint. Given an intermediate datapoint p with
descendant datapoints D, in the provenance graph, its degree of
error (E(p)) is simply the mean degree of error of its descendant
datapoints (d € Dp). The degree of error of a final output (a terminal
datapoint) is 1 if the user labeled it as an error and 0 otherwise.

1, if p is an error output
E(p) = |Dp|_1 Zder E(d), ifp is an intermediate datapoint

0, otherwise

In Figure 2, each edge is color coded by each datapoint’s degree of
error: light shades of red for low degree of error and deeper shades
for higher degree of error; gray for datapoints whose contribution to
final errors is unknown. This allows end-users to quickly eliminate
branches that do not contribute to any error.

2.3 The Data Panel

The data panel displays a selected module’s output datapoints in
tabular form. For each column, a simple profiler determines from
the provenance data whether a module (i) added a new column
(®), (ii) modified the values of a column (A), (iii) maintained the
values of a column, or (iv) used the column as a key to join multiple
inputs (§). Each column in the data panel is annotated with its type
icon, ®, A, 1, except for columns whose values remained the same.
These annotations allow the users to understand at a high-level the
behavior of a data flow even with black-box modules.

3 EXPLAINING ERRORS

An explanation e is a predicate as defined by the explanation lan-
guage in Listing 1 that operates on the attributes of a module’s
output datapoints. The explanation language is concise, sensitive
and specific. Given its simplicity, end-users can quickly examine
and choose the appropriate explanation. To maintain efficient syn-
thesis we restricted our conjunctions to three atomic conjuncts,
and to three disjunctions of such conjuncts. We found that this size
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Edge width indicates the size of a mod-
ule’s output and color indicates degree of
error.

For each explanation, we show support
and reach at immediate module outputs
and at the final flow outputs.

The profiler indicates whether a column
was modified, added or is a key.

Figure 2: Interface of WayFLow

restriction is important to ensure explanation conciseness, and thus
user-readability: the maximum size of an explanation is 9 atoms —
Miller’s law states that the magic number seven +/- two is a rough
limit on our cognitive capacity to process information [14]. It also
allows for interactive synthesis from a few labeled outputs. Our
explanations capture filter and join errors, which are a major class
of data flow errors. However, they cannot explain errors affecting
modules that reduce a set of inputs. To explain such aggregation
errors, we need to introduce quantification, which may cause the
synthesis problem to become intractable.

For each module in the flow with incorrect outputs, the synthe-
sizer generates explanations with support and reach within certain
thresholds (see appendix for synthesis details):

Support: The percentage of incorrect data points captured by an
explanation. For an explanation at a given module, we can evaluate
support on its immediate outputs (using back-propagated labels or
degree of error) or on the data flow’s final outputs. We compute and
present both support measures to the user in WuyFLow (Figure 2).

Reach: The percentage of unknown (unlabeled) data points cap-
tured by an explanation. For an explanation at a given module,
we can evaluate reach on its immediate outputs (outputs with a
degree of error equal to zero) or on the data flow’s final outputs (i.e.
unlabeled outputs, which may or may not correct). We compute
and present both reach measures to the user in WuyFLow.

3.1 Global Explanation Clustering & Ranking

To minimize the user’s cognitive load of exploring many explana-
tions, we cluster explanations by semantic similarity. For exam-
ple, the explanations size < 6 and size in [0, 6] are semantically
identical for size, a non-negative integer, but both are generated,;

WayFLow should group these explanations together. To approxi-
mate the notion of semantic similarity without statically analyzing
each explanation, we cluster explanations with identical column
sets. Consider explanations e, ez, e3 that operate over columns {A,
B, C}, {A, B}, and {A, B} respectively: explanation e; will appear in
one cluster and explanations ey, e3 will appear in another cluster.

To rank explanations and clusters, we assign a score to each

explanation ey, at a given module m. Let C(ey;) be an explanation’s
column set. The score is a weighted sum of the following factors:

(1) An explanation’s support (support(er,)), reach (reach(en)),
and conciseness (size(ep,) ') — smaller, minimal explanations
are preferred as being easier to read and understand.

(2) The module’s maximum depth (MaxDepth(m)~!) within a
data flow— given two otherwise identical explanations oper-
ating on different modules, the explanation from an upstream
module is preferable to a downstream one as we would like
to localize errors to the earliest possible origin.

(3) The mean poorness-of-fit across all columns in C(ey,). For
c € C(em), F(c) is the poorness of fit of the distribution of
values with a non-zero degree of error to the distribution of
values with unknown degree of error as measured by either
(i) 1— the p-value of a Chi-Square test or (ii) 1 — the p-value
of a Kolmogorov-Smirnov (KS) test. We use Chi-Square for
categorical values. Explanations over columns that show
more differences between the distribution of values for errors
and unknowns are preferred as they allow users to visually
verify the contribution of a column to an error.

(4) The mean relationship (M) between the module and all
columns of an explanation’s column set (Section 2.3) — ex-
planations on columns that are modified, added or used as
candidate join keys by the given module are more relevant.
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Proposition p::=a contains (str | b) |
a starts with (str | b) |
a ends with (str | b) |
a matches regex |
a = (x | str | b | NULL) |
a (> > 1 <] <=)&]bl
a in [min, max]
Atom t ::= p | not(p) | true
Conjunction c::= t and t and t | false
Explanation e::= c or ¢ or c

Listing 1: WaYFLow’s language of explanations. str is a
string constant; X, min, and max are numeric constants, regex
is a regular expression, and a, b denote attributes

The overall score of an explanation is:
Score(e) = a1 - support(emn) + a2 - (1 —reach(en))

+ a3 -size(em)™t + ag-MaxDepth(m)™!

1 1
+ a5 —— F(c) + a¢ ——— M(c
el 2 T e 2 MO

Within each cluster, explanations are ordered by highest scoring
explanation first. A cluster’s score is set to be the score of the highest
scoring explanation within it. Globally, all clusters are sorted in
descending order of score (see Figure 2).

4 EVALUATION
4.1 End-to-End User Evaluation

We conducted a comparative user study of debugging with
WnyFLow and a baseline version of WHYFLOW, where explana-
tion suggestions, and workflow edge color coding by error were
disabled. The Baseline version mimics manual debugging, limiting
the workflow visualization to displaying, upon clicking a module,
the outputs in a tabular format. To isolate the effect of explana-
tions on end-user debugging, we perfectly labeled intermediate
data points as correct or incorrect. Additionally, in the study, expla-
nations were ranked by only support and reach. Later, we evaluate
the effectiveness of global ranking separately.

Data Flows. We reproduced two data flows from the TPC-
Decision Support (TPC-DS) benchmark queries and data set [16].
The TPC-DS benchmark is widely used in systems research and
industry to evaluate general purpose decision support systems and
big data systems. Table 1 describes these two data flows.

The modules in our data flows can generally be described as
a single or simple sequence of relational operations such as ‘fil-
ter’ or ‘join and aggregate! While data flows in WHYFLOW can
have non-relational modules, the modules were relational to sim-
plify the debugging task for users not familiar with the data flow.
We label each black-box module with such relational semantics,
which are surfaced to participants to enable them to more easily
grasp the gist of a data flow without necessarily understanding
the implementation-level details. We then purposefully introduce
relational operation errors into particular modules.

Participants and Methods. We recruited 10 participants who have
taken an introductory database applications course. Participants
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Time to Complete Debugging Task (minutes)

@ User gave accurate error class/explanation
% User gave incorrect error class/explanation

B for Baseline
W for WhyFlow

Figure 3: The duration of debugging activities for each user.
The avg time per error class and tool are also marked.

were familiar with the standard relational operators, but not with
how they were specifically implemented in the data flows. Each
participant was given a training session for both conditions of
WayFLow and mock debugging tasks on a mock data flow to get
familiar with the tool conditions and the scope of the code modules
and errors they would analyze.

We presented the participants with correct executions of data
flows W1 and W2 in WHYFLOW and asked them to describe each
code module’s expected operation and identify the columns it op-
erated on. Each participant then completed three debugging tasks
for different error classes on each condition of WaYFLOW. We ran-
domized the order of conditions they started with and the order of
tasks within each condition:

(1) Filter Errors: Modify a filter operation such that it selects
correct and incorrect values in the output.

(2) Join Type Errors: Modify a join type replacing inner joins
with full outer joins.

(3) Join Column Errors: Modify the parameters of the join
operation causing the join to operate on incorrect columns.

For each error class, we created two similar complexity variants
(Table 2) to minimize learning effects across Baseline and WaYFLOW.
These three error classes cover the types of errors WHYFLOW can ex-
plain. We pre-labeled the correct and incorrect outputs. To complete
a debugging task, participants had to either select an explanation
for the error in WaHYFLOW or provide one for Baseline. Participants
were asked to think aloud and verbalize their thoughts when they
believed they had identified the faulty module, determined the error
class, or could express some intuition on the nature of the error.
These events, and all other participant verbalizations during the
course of the experiment, were recorded.

4.1.1  Explanations Matter. We hypothesized that users would iden-
tify errors and select appropriate explanations more accurately
using WHYFLOW vs using Baseline without requiring more time.

We found that users selected correct explanations more fre-
quently with WaYFLOW than with Baseline (Table 3). Remark-
ably, all five users who initially misidentified the join type error
class with WaYFLOW selected the correct explanation.
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Data Flow Data Set Description Modules  Sources
W1 TPC-DS  Which customers shopped at which stores and returned more than 1.2 of the average store’s return 9 4
amount?
w2 TPC-DS  What are the sums of sales prices per customer location? 10 4
W3 TPC-DS  Given a time period and a particular manager, what brands were sold, when (hour and minute of the 15 6
day) were those brands sold, and what was the brand’s total sales price?
W4 TPC-H  Given a set of countries and certain requests, how many customers per country had those requests 5 2
and what is the total account balance per country?
W5 TPC-H  For each item’s brand, its type, and its size, how many available suppliers are there? 9 2
W6 TPC-H  How many items per container type are still in the production line or are shipped out? 9 2
Table 1: Data Flow descriptions. The first two data flows were used for the user study (Section 4).
ID Expected Operation Error Sample Valid, Relevant Explanation
‘W1-JStore Inner Join on W1 JoinWithStore Outer Join storeID = NULL
W1-JCust Inner Join on W1 JoinWithCustomer Outer Join customerID = NULL
W1-CStore Join on store IDs Join on store ID and company ID not(Returns.storeID = Store.storelD)
W1-CCust Join on customer IDs Join on customer ID and market ID  not(Returns.customerID = Customer.customerID)
W2-Zip Selects zipcodes that start with ‘80’ Selects zipcodes that start with ‘80°  zipcode starts with '30'
and ‘30’
W2-State Selects states in {CA,GA,WA} Selects states in {CA,GA,WA,CT} state = 'CT'
W2-Quarter  Selects yearly quarters = 2 Selects yearly quarters < 2 quarter =1
W3-Manager  Selects managerID = 1 Selects managerID < 2 not(managerID = 1)
W3-Meal Selects meal times in {breakfast, Selects meal times in {null,break- mealtime = NULL
dinner} fast,dinner}
W4-Code Selects country codes that begin Selects any country codes countrycode >= 20

W4-Comment

W5-Type
W5-Size
W6-Ship

W6-Size

with 1

Selects comments not containing
‘deposits’ and containing

‘special requests’

Selects types that begin with
‘SMALL ANODIZED’

Selects sizes in {8,12,14,25,30,34,36,
41}

Selects shipmode in {RAIL}

Selects sizes between 5 and 26

Selects comments containing
‘deposits’ or containing

‘special requests’

Selects types that begin with
‘SMALL’

Selects sizes in {8,12,14,25,30,34,36,

comment contains 'deposits’
or comment contains 'special’

not(type contains 'ANODIZED')

size >= 42

41,42}

Selects shipmode in {RAIL, SHIP,

TRUCK}

Selects sizes < 6 or sizes > 26

not(shipmode = 'RAIL")

(size < 6) or (size > 26)

Table 2: The 15 different errors scenarios used in evaluations. The first six error scenarios were in the user study (Section 4).

Class Identified

Correct Explanation?

E Cl Tool
rrorilass o0 Correctly No Yes
Baseline No 10% A
. Yes - 90%
Filter
WHaYFLOW No ) )
Yes - 100%
. No 10% 20%
Baseline
Join Type Yes 10% 60%
P No - 50%
WayFLow
Yes 10% 40%
. No 40% -
. Baseline Yes 10% 50%
Join Column
WnyFLow No 10% .
Yes - 90%

Table 3: Pct of users broken down by correctness of verbal-

ized error class and correctness of the final explanation.

We conducted a two-way repeated-measures ANOVA on the
duration of time for users to verbalize the error class, with error
class and tool used (WnaYFLOW vs Baseline) as independent factors.
There were neither significant interaction effects, nor a significant
main effect of error class. We did find a significant main effect of tool
used (F19 = 10.15,p = 0.01). Users spent less time identifying
the error class with WHYFLOW. Furthermore, with the exception
of join type errors, their initial intuition of the error was more
accurate than with Baseline (See Figure 3).

We also conducted a two-way repeated-measures ANOVA on
the overall time for users to complete the debugging task and found
no significant interaction effects, nor any significant main effects
of tool used (WuYFLOW Vs Baseline). In fact, any gains WaYFLOW
provided to help users determine the error class were lost due to
the time spent searching for and selecting an appropriate explana-
tion. These results emphasize the importance of going beyond only
support and reach for ranking explanations.
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D Explanation Rank Cluster Rank

Global SR “°f  Globat sr o
Expls. Clusters
W1-]JStore 10 556 1548 1 207 598
W1-JCust 8 83 207 2 77 157
W1-CStore 14 60 141 11 26 39
W1-CCust 39 33 43 20 18 21
W2-Zip 2 12 79 1 3 22
W2-Quarter 8 87 391 3 4 140
W2-State 6 6 379 1 1 88
W3-Manager 6 4 65 1 1 24
W3-Meal 3 74 186 1 2 54
W4-Code 9 8 33 5 5 13
W4-Comment 67 13 124 20 1 29
W5-Type 5 5 307 1 1 10
W5-Size 6 6 66 1 1 8
W6-Ship 8 8 26 2 2 3
W6-Size 6 10 430 2 1 17

Table 4: WaYFLOW’s global explanation ranking quality. (S/R)
shows the rank order using only support and reach.

Overall these results indicate that WHYFLOW can be an effective
data flow debugging tool in that users select more accurate expla-
nations with WHYFLOW. 90% of the users found the explanations
generated by WHYFLOW simple and easy to understand. One user
elaborated, “I had no clue what was going on [in Baseline], but
explanations gave me hints” Many users stated that they used ex-
planations as a means to validate their intuition on what was the
cause of the error. One user said: “I debugged in my head first and
then I selected an explanation” Another user stated “explanations
helped especially when I wasn’t 100% sure”.

4.2 Effectiveness of Global Ranking

We now evaluate the effectiveness of WHYFLOW’s global ranking
of explanations. Table 4 presents the rank of the most relevant ex-
planation for all the error scenarios described in Table 2. For 12 out
of the 15 error scenarios, WHYFLOW’s global ranking places a valid
explanation cluster within its top-5 clusters and a valid explana-
tion within its top-10 suggestions (if we expand all clusters).! The
table also shows that clustering reduces the number of explanation-
groups that users have to examine. Finally, we observe that most
error scenarios benefit from using our global ranking score over
rather than only using support and reach to rank explanations. In
only three scenarios (W1-CStore, W1-CCust, W4-Comment), the
valid explanations are ranked lower: this is because explanations
over highly correlated columns, which have more distinct error
distributions, were ranked higher than the real explanations.

5 RELATED WORK

Our work draws from research in data provenance, notions of
causality and explanations in databases and Al, and human-centered
research on data and software debugging tools.

WaYFLOW assumes the existence of provenance or data lineage.
Interactive provenance querying systems allow users to investigate

IFor this experiment, only a fraction of the error outputs were labeled.
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a specific set of suspect outputs and to audit and verify the correct-
ness of data transformations. A survey of provenance tools can be
found in [4]. WHYFLOW expands on this basic debugging support
by allowing users to label error outputs and visually compare the
color-coded error and non-error data flows in the interface.

Causality, which characterizes the relationship between an event
and outcome, is of clear practical importance to debugging. Unfor-
tunately quantifying causal contributions is both NP-complete and
limited to data debugging [13] or finding errors in the data source
rather than the data processing modules. Explanations or predicates
that describe outliers, anomalies, or interventions generally give
up the notion of causality to enable more practical debugging [17-
19]. While WaYFLOW does not focus on identifying and removing
specific inputs that would resolve the errors [20], WHYFLOW aims
to prevent errors in future executions of the data flow by helping
end-users pinpoint faulty code modules through differences of error
and residual outputs, including intermediate outputs and not just
the data sources and final outputs [2].

Data cleaning and repair tools[5] differ from WaYFLOW as they
do not aim to explain the source of the errors but only to identify
incorrect items in a dataset. Such tools can be used as complements
to automatically label erroneous outputs in WaYFLOW.

Statistical debugging combines machine learning and software
debugging to select a small set of program predicates that can
succinctly capture failure modes and thereby localize faults, from
samples of successful and failed software run-time profiles [11, 12].
However, such approaches operate at a much lower level, analyzing
both the control and data flow of a program. WayFLOW only exam-
ines the provenance graph and assumes modules are black-boxes.

WayFLOW is a mixed-initiative, programming by example (PBE)
tool in that the synthesis of error explanations is guided by pro-
viding a few examples of a data flow’s erroneous outputs. While
debugging strategies can vary widely, a number of studies show
that the debugging process is a hypothesis-driven activity [10]. In
particular, most developers begin with a ‘why’ question regarding
the program’s behavior, and then skillfully transform this question
into low-level tasks such as searching logs or instrumenting the
code with breakpoints and print statements [10], often guided by a
hypothesis on the possible location of the fault [15]. In WrYFLOW,
users do not directly pose why-questions; however by labeling er-
roneous outputs, they are implicitly using our tool to determine
why there are differences between the error and non-error flows.

6 CONCLUSIONS & FUTURE WORK

Given end-users error labels in the final outputs, WaYFLOW helps
end-users with debugging data flows by explaining errors with
predicates and visualizing the data flow, the provenance of outputs,
and the differences between erroneous and residual data flows.
Our evaluations show that WHYFLOW enables most users to accu-
rately localize and communicate faults. We hope to (i) make our
explanation language even more powerful to capture aggregation
errors while maintaining synthesis efficiency, (ii) utilize why-not
provenance [3] to explain errors where erroneous data points are
completely dropped, (iii) scale WaYFLOW to handle larger data sets
interactively, and (iv) expand support for data flows with several
errors.
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A APPENDIX
A.1 Explanation Synthesis

At each module for all flows with incorrect outputs, the explanation
synthesizer generates all possible atomic predicates that capture
some of the incorrect outputs. The synthesizer prunes explanations
according to the explanation’s support and reach. Intuitively, a
good explanation is one with high support. But what about reach?
An explanation with high reach marks most unknowns as errors.
Such an explanation is too pessimistic and, assuming that errors
are rare events, an explanation with high reach is less desirable
than one with lower reach. An explanation with low reach marks
very few unknowns as errors and runs the risk of being too conser-
vative. Therefore, good explanations should have high support and
reasonable reach.

After generating atomic predicates, the synthesizer then assem-
bles conjunctive pairs or triples, and groups the conjuncts into
disjunctive pairs or triples. To keep the explanation set relatively
small and to ensure interactive explanation synthesis, the synthe-
sizer prunes the search space and result set as follows:

(1) First, the number of base atoms considered for conjunctions

is limited to only those with high support (> MinSupport).

(2) Second, since conjunctions can only decrease support and

reach, a conjunction of up to three atoms is only formed if
the combined support remains above a minimum support
threshold (> MinSupport) and the combined reach decreases,
but not below a minimum reach threshold (> MinReach).

(3) Finally, since disjunctions can only increase support and

reach, a disjunction of up to three conjuncts is only formed
if the combined support increases and reach remains below
a maximum reach threshold (< MaxReach).

As an additional optimization, the synthesizer computes sup-
port and reach on a module’s immediate outputs (using back-
propagation to determine the degree of error of an intermediate dat-
apoint) and not the final outputs. This local computation eliminates
the overhead of forward-propagating an explanation’s labeling of
flows to determine its support and reach on the data flow’s final
outputs.
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