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ABSTRACT
We describe Texture, a framework for data extraction over print doc-
uments that allows end-users to construct data extraction rules over
an inferred document structure. To effectively infer this structure,
we enable developers to contribute multiple heuristics that identify
different structures in English print documents, crowd-workers
and annotators to manually label these structures, and end-users
to search and decide which heuristics to apply and how to boost
their performance with the help of ground-truth data collected from
crowd-workers and annotators. Texture’s design supports each of
these different user groups through a suite of tools. We demonstrate
that even with a handful of student-developed heuristics, we can
achieve reasonable precision and recall when identifying structures
across different document collections.
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1 INTRODUCTION
Sealed in print is a vast amount of inscrutable information waiting
to be surfaced, identified, searched and linked. Extracting this in-
formation is not easy; While there are many tools and techniques
for automatically extracting information from documents that are
largely structured or at least have a well-defined mark-up such
as web documents and web tables [5, 20], we are yet to construct
methods that can scalably handle the large variety and absence
of a marked-up structure in print documents. Existing approaches
either (i) give up on structure entirely, utilizing for example natural
language processing to infer the semantics of the text within the
document [24] (ii) or examine structure in a siloed fashion, devel-
oping complex and sophisticated techniques to determine a specific
structural element such as a figure, a table, or other within a given
document collection [11, 27].

In Texture, we adopt a two-staged approach to extracting infor-
mation from collections of documents such as books, magazines,
articles, receipts, etc. that are intended for print and are stored and
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extract (l/listitem i).content as ingredient
from CookBooks/document d/list l
where l below1 d/sectiontitle s
and lowercase(s.content) like '%ingredient%'
and lowercase ((d/title t).content) like '%stir -fry%'

Listing 1: A rule in Texture’s Structure-Based Extraction
Language (SBEL) for extracting ingredients from lists in
cookbooks.

extract (d/ title t).content as name ,
entity(p.content , 'organization ') as institution2

from Resumes/document d
where (d/* p) below d/sectiontitle s3

and lowercase(s.content) like '%education%';

Listing 2: A SBEL rule that extracts educational institutions
where an applicant studied at but did not work at.

shared digitally as PDF documents. Our first stage involves identi-
fying structural elements from the collection such as title, section
titles, tables, figures, captions, headers, footers, lists, etc. with the
help of multiple, independently authored and boosted weak heuris-
tics, and structure annotations provided by the crowd or expert
annotators. Our second stage allows users to construct, in a do-
main specific language, simple extraction rules over the identified
structures: these rules can even be automatically generated from
examples with the help of known wrapper induction techniques.

1.1 Motivating Examples
We illustrate the benefit of our two-staged approach with the fol-
lowing motivating examples:

Example 1.1. Chef Remy wishes to create a new stir-fry recipe
using a data-driven approach. He has a collection of 500 cookbooks
and wishes to investigate what are the commonly used ingredients
when making stir-fry. With Texture, he simply specifies the rule in
Listing 1 to extract most of the information he needs.

Example 1.2. Layla, an HR administrator, is compiling a table
of applicant names and the educational institutions they attended
from a collection of 50 resumes. With Texture, she specifies the rule
in Listing 2 to extract the relevant information.

Without Texture, these end-users can still extract their data using
any of the following approaches:

(1) Train an ML model to automatically label the relevant data.
Such ML solutions, however, require large training data sets, which
may not be readily available. Creating a training data set may not
be a justifiable endeavor given the personal, and one-off nature of
the use-cases Texture is designed for.
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39DINNER

Mango Chicken 
Stir-Fry
Tender chunks of chicken team up with 
crisp peppers and sweet mangos in  
this colorful stir-fry. Substitute half of the 
red bell pepper with green bell pepper for 
a more colorful dish.

Makes 4 servings. 1½ cups per serving. 
Prep time: 15 minutes Cook time: 15 minutes

s s s s s s s s s s s s s s

Ingredients
  nonstick cooking spray

 1 pound boneless, skinless chicken 
breasts, cut into bite-size chunks

 ¼ cup pineapple juice

 3 tablespoons low-sodium soy sauce

 ¼ teaspoon ground ginger

 1 red bell pepper, cut into  
bite-size strips

 2 mangos, pitted and cut into  
bite-size strips

 ¼ cup toasted, slivered almonds 

  ground black pepper to taste

 2 cups cooked brown rice

Nutrition information per serving: Calories 387, Carbohydrate 47 g, 
Dietary Fiber 7 g, Protein 31 g, Total Fat 9 g, Saturated Fat 2 g,  
Trans Fat 0 g, Cholesterol 68 mg, Sodium 496 mg

Preparation
1. Spray a large wok or skillet with nonstick 

cooking spray. 

2. Sauté chicken over medium-high heat until 
cooked through, about 10 minutes.

3. In a small bowl, stir together pineapple juice, 
soy sauce, and ginger. Add sauce and bell 
pepper to the skillet. 

4. Cook and stir for about 5 minutes until 
peppers are crisp-tender.

5. Add the mango and almonds to the wok or 
skillet and cook until hot. Season with ground 
black pepper to taste. 

6. Serve each cup of stir-fry over ½ cup of 
brown rice.
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Figure 1: A recipe from Chef Remy’s collection of 500 cook-
books. Texture identifies different structural elements such
as document title, section titles, lists and list items to allow
him to only extract the ingredients of stir-fry recipes using
Listing 1.

�������������
1700 E Bayshore Rd, East Palo Alto, CA 94303 \\ kcolwell@hotmail.com

���������
To obtain a position that will enable me to use my strong organizational skills and ability to work well with people.

�����
	������
Lab Assistant \\ Stanford University \\ Stanford, CA \\ June 2009 - Current
Answered phones, worked heavily with Microsoft programs, processed time sheets for payroll of technicians, processed purchase orders for equipment and 
supplies, managed office inside of various science labs.

Sales Representative \\ The Music Place \\ Berkeley, CA \\ Jan 2009 - May 2009
Generate new accounts in the student educational music industry by developing relationships with local school bands and orchestra directors for this 
independently owned musical instrument store. Managed order fulfillment, contract preparation and customer service activities.
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University of California, Berkeley \\ Bachelor of Arts, Business Administration \\ Berkeley, CA \\ Sept 2005 - May 2009
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Figure 2: A resume from which Listing 2 can extract educa-
tional institutions attended.

(2) Crowd-source the data extraction task. Crowd-sourcing data
extraction is not trivial even if we provide a simple tool that cre-
ates HITs for every page in the end-user’s collection of documents,
automatically stores the labeled text in a backend database and pro-
vides agreement measures for each label. This is because specifying
the task non-ambiguously and constructing quality assurance and
validation checks are task-specific and often require several trial
and error runs. Moreover, with private or copyrighted collections,
sharing the documents with the crowd may not even be an option.
Finally, as the size of the collection grows, this solution does not
scale well as we are bottle-necked by the number of crowd workers
available and the time and cost required to label a page.

(3) Hire freelance developers to write data extraction code. Unfortu-
nately, our experience with this approach has been disappointing:
Handling PDF documents and data extraction tasks requires exper-
tise that most freelance developers do not have4. Recruiting and
hiring an experienced developer not only takes time but can be

4We engaged with multiple developers on different freelance platforms like Freelancer
and Upwork and hired five developers to complete different data extraction tasks.

quite expensive. Moreover, most of the data extraction code devel-
oped does not generalize to other collections with different styles
and is difficult to adapt to new data extraction tasks. Thus, this may
not be a viable option for our end-users that want quick solutions
for their adhoc data extraction requirements.

1.2 Design Considerations
If we can accurately identify structure, then we can enable end-
users like Chef Remy and Layla to construct powerful and mean-
ingful data extraction rules from the imputed structure over print
documents. In this work, we address only the first stage of our two-
staged approach, i.e. the challenging problem of accurately identify-
ing structure in print documents. We describe the key factors that
influenced the design of Texture’s interface and implementation:

(1) Multi-role Support & Division of Labor: End-users like Remy
and Layla are interested in data extraction over their uploaded data
collection; they may be incapable of writing heuristics to extract
structure but they would like to search, apply and evaluate differ-
ent structure identification heuristics and may even be willing to
provide a few structure annotations themselves or with the help
of the crowd to boost the performance of the heuristics. Develop-
ers can contribute open-source heuristics to Texture’s shared code
repository to enable such end-users. Texture provides support for
each of these roles through (i) the heuristics interface which allows
one to search and apply different heuristics, (ii) the framework’s
code repository, where developers can upload and unit-test their
Java-coded heuristics and (iii) the CrowdCollect and SelfLabel tools
that allow for crowd sourcing structure identification and manually
self-labeling structural elements within the collection, respectively.

(2) Tolerance for Imperfection: Creators of print documents often
strive to create visually appealing and distinctive documents, which
results in a plethora of document styles and layouts within and
across different document collections. In a single CACM publica-
tion, there are at least four different layouts and styles for document
titles alone (See Figure 5). Even though many templates for CVs
exist, job applicants often add their own flare to stand out. Despite
such variations, English print documents often follow certain con-
ventions: text flows from left to right, paragraphs are contiguous
blocks of words separated by white space, section titles are often
stylized differently from other text, lists are often numbered or
bulleted, etc. Thus, we expect that simple heuristics can identify
structures but that no single one is comprehensive enough to ac-
curately identify a structure across multiple documents and that
the performance of heuristics varies greatly across different col-
lections. This means that we need to tolerate noise and boost the
performance of these heuristics for a given document collection
utilizing either ground-truth data or heuristics agreements and
disagreements.

(3) Independent & Graphical Structural Annotations: As multiple
user-groups collaborate on structure identification, it is crucial to
maintain a single unifying representation of identified structural
elements. In Texture, all heuristics and hand-labeled annotations
are represented as graphical bounding-boxes over regions on a page.
We chose this representation instead of content-based representa-
tions (such as text-highlights) to create a unifying representation
of different structural elements (both figures and text are covered
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by boxes), and to ease the manual annotation process — drawing
bounding boxes is much easier and faster than trying to highlight
text. Our bounding box representation also allow us to use spatial
indexing techniques to efficiently determine (a) if multiple annota-
tions overlap, and (b) the spatial relationships between structures
and hence the logical layout of a document.

(4) Flexbile Workflow System: To enable developers to focus on
the semantics and behavior of heuristic, rather than low-level imple-
mentation details, we need to provide a library of basic primitives
and manage heuristic execution and data management. Texture
provides a library of basic primitives such as methods for iden-
tifying words and lines in a document, and basic statistics such
as distributions of font size, line height, line spacing, etc. Texture
handles heuristic execution within a workflow to handle order con-
straints (e.g. to identify figures before captions to support a caption
heuristic that identifies text immediately below or above a figure as
a caption), prioritizes the order of documents fed into the heuristic
workflow, and handles the storage of structures identified.

Our two key contributions in this paper are, first, a description
of our collaborative framework and how it supports different users
performing their roles from writing structure identification heuris-
tics, to searching, applying and evaluating them and, second, a
qualitative evaluation of the heuristics written in our framework
by five undergraduate students: we discuss the process as well as
the complexity and the quality of the heuristics.

2 OVERVIEW
Texture supports collaboration across multiple user groups for struc-
ture identification. Figure 3 shows an overview of the different com-
ponents involved in the process of structure identification, which
we now describe:

2.1 Human-driven Structure Identification
Texture allows both crowd workers and annotators, who may be
the end-users themselves, to label the different structures within
a document with the help of bounding boxes using CrowdCollect
and SelfLabel respectively. End-users can use these hand-labeled
structures to create a ground-truth data set against which heuristics
within the shared code repository are evaluated and later boosted.

Texture simplifies the process of collecting structure labels from
the crowd through CrowdCollect. Unlike generic data extraction
tasks, it is much easier to generate HITs for structure identification
because these structures are not task-specific and we have a general
understanding of what they are within English print documents.
Thus, we can easily create HITs that include tutorials for guiding
crowd-workers on how to label structural elements, training mate-
rials as well as validation and quality assurance checks as seen in
Figure 4.

To improve worker efficiency and accuracy, we limit each HIT
to a specific structural element and we require at least five workers
to perform the same HIT. Workers cannot proceed with a HIT if
they fail the training phase. We require workers to draw bounding
boxes that (i) completely enclose a structural element such as a
paragraph, (ii) do not contain other elements and (iii) have tight
margins (i.e. have as little surrounding white space as possible). If
we detect any overlapping boxes, we ask the worker to re-draw

the boxes. We drop a worker’s entire HIT if they failed our hidden
validation task by not correctly labeling all relevant structures on a
page that we have previously labeled.

End-users can provide a budget and CrowdCollect determines
the sample of documents to issue to the crowd for labeling. End-
users may also modify the content of the HITs, including providing
their own labeled validation pages. Currently Texture generates an
Amazon Mechanical Turk kit, which end-users have to manually
upload to the platform and launch themselves. In the future, we
hope to seamlessly integrate with the platform.

After the HITs are launched and completed, Texture stores the
labeled structures and ensures that a minimum level of agreement
across multiple workers for each stored labeled structure (see Sec-
tion 2.3).

2.2 Shared Heuristic Repository
Developers can contribute heuristics to the code repository as
long as they are written in Java and they adhere to our minimal-
ist Heuristic class interface. There are no restrictions on how
a heuristic identifies a structure, or its performance on a hidden
dataset. This is to encourage developers to contribute any num-
ber of heuristics that may be tailored to a specific domain. For
each heuristic contribution, developers are required to provide a
unit-test and a corresponding test document set5. To support the
development of heuristics, our framework provides basic primitive
methods such as getContent(<box> B), which returns the text
or image within a bounding box, getFontFeatures(<box> B),
which returns the different font types and styles used within a box,
getFontTypes(<document> d), which returns a map of the font
types used in a document and their frequency, etc. The framework
automatically controls execution order if a heuristic relies on the
identification of other structures before its execution. In the future,
we hope to support heuristic development in Python.

2.3 Data model
For a given document collection, Texture stores all identified struc-
tures in a Postgres database. We represent structures as bounding
boxes within a document defined by a tuple (k,d,p,B, F , l ,h), where

• k is a unique box identifier,
• d is the document identifier,
• B is a rectangular bounding box defined by its width, height,

and 3-D coordinates (page, x, y),
• F is a set of properties that describe the box’s content (e.g.

‘fonttype: Times New Roman; fontsize: 12 pt;...’ or ‘nested-in:
k ′’),

• l is the label assigned to the bounding box (e.g. ‘title’ or
‘table’), and

• h identifies the heuristic, crowd-worker or annotator that
generated the bounding box.

Our flexible data model allows custom structures with different
properties in F . For example, table rows and columns may have an
index property and section titles may have a depth level. Note that
this data model allows a multiplicity of labels: different heuristics

5In the future we intend to measure how similar this test document set is to an end-
user’s document collection, to allow us to automatically suggest heuristics to apply
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1 INTRODUCTION
Sealed in print is a vast amount of inscrutable information waiting
to be surfaced, identi�ed, searched and linked. Extracting this in-
formation is not easy; While there are many tools and techniques
for automatically extracting information from documents that are
largely structured or at least have a well-de�ned mark-up such
as web documents and web tables [7, 22], we are yet to construct
methods that can scalably handle the large variety and absence of a
marked-up structure in print documents. Existing approaches either
(i) give up on structure entirely, utilizing natural language process-
ing to infer the semantics of the text within the document [26]
(ii) or examine structure in a silo-ed fashion, developing complex
and sophisticated techniques to determine a speci�c structural el-
ement such as a �gure, a table, or other within a given document
collection [14, 29].

In Texture, we adopt a two-staged approach to extracting infor-
mation from collections of documents such as books, magazines,
articles, receipts, etc. that are intended for print and are stored
and shared digitally as PDF documents. Our �rst stage involves
identifying structural elements from the collection such as title, sec-
tion titles, tables and their components, �gures, captions, headers,
footers, lists, etc. with the help of multiple, independently authored
and boosted weak heuristics, and structure annotations provided
by the crowd or expert annotators. Our second stage allows users
to construct, in a domain speci�c language, simple extraction rules
over the identi�ed structures: these rules can be automatically gen-
erated from examples with the help of known wrapper induction
techniques.

1.1 Motivating Examples
We illustrate the bene�t of our two-staged approach with the fol-
lowing motivating examples:
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extract (l/listitem i).content as ingredient
from CookBooks/document d/list l
where l below1 d/sectiontitle s
and lowercase(s.content) like �%ingredient%�
and lowercase ((d/title t).content) like �%stir -fry%�

Listing 1: A rule in Texture’s Structure-Based Extraction
Language (SBEL) for extracting ingredients from lists in
cookbooks.

Example 1.1. Chef Remy wishes to create a new stir-fry recipe
using a data-driven approach. He has a collection of 500 cookbooks
and wishes to investigate what are the commonly used ingredients
when making stir-fry. With Texture, he simply speci�es the rule in
Listing 1 to extract most of the information he needs.
extract t.content as papertitle
from Articles/document d/title t;

39DINNER

Mango Chicken 
Stir-Fry
Tender chunks of chicken team up with 
crisp peppers and sweet mangos in  
this colorful stir-fry. Substitute half of the 
red bell pepper with green bell pepper for 
a more colorful dish.

Makes 4 servings. 1½ cups per serving. 
Prep time: 15 minutes Cook time: 15 minutes
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Ingredients
  nonstick cooking spray

 1 pound boneless, skinless chicken 
breasts, cut into bite-size chunks

 ¼ cup pineapple juice

 3 tablespoons low-sodium soy sauce

 ¼ teaspoon ground ginger

 1 red bell pepper, cut into  
bite-size strips

 2 mangos, pitted and cut into  
bite-size strips

 ¼ cup toasted, slivered almonds 

  ground black pepper to taste

 2 cups cooked brown rice

Nutrition information per serving: Calories 387, Carbohydrate 47 g, 
Dietary Fiber 7 g, Protein 31 g, Total Fat 9 g, Saturated Fat 2 g,  
Trans Fat 0 g, Cholesterol 68 mg, Sodium 496 mg

Preparation
1. Spray a large wok or skillet with nonstick 

cooking spray. 

2. Sauté chicken over medium-high heat until 
cooked through, about 10 minutes.

3. In a small bowl, stir together pineapple juice, 
soy sauce, and ginger. Add sauce and bell 
pepper to the skillet. 

4. Cook and stir for about 5 minutes until 
peppers are crisp-tender.

5. Add the mango and almonds to the wok or 
skillet and cook until hot. Season with ground 
black pepper to taste. 

6. Serve each cup of stir-fry over ½ cup of 
brown rice.

title

list

listitem

sectiontitle

paragraph

paragraph

figure

sectiontitle
list
listitem

Figure 1: A recipe from Chef Remy’s collection of 500 cook-
books. Texture identi�es di�erent structural elements such
as document title, section titles, lists and list items to allow
him to only extract the ingredients of stir-fry recipes using
Listing 1.

Example 1.2. Jennifer, an HR administrator, is compiling a table
of applicant names and the educational institutions they attended
from a collection of 50 resumes. With Texture, she speci�es the rule
in Listing 2 to extract the relevant information.

Example 1.3. Layla, a Systems Administrator, needs to create a
database of di�erent processor features to help her design a high
performance computing cluster for scienti�c simulations. She has
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Figure 3: An overview of the framework, its components and the collaboration across different user groups that it supports.Abalo, Callender, Munoz, Nam & Surnin Structure Identification in PDF Documents

Figure 2: Paragraph labeling instructions, page 2

(b) Training stage:

In order to ensure that the workers have a clear understanding of the task, we present
them with a sample page that has been labeled by us a priori. We do not let the workers
advance to the labeling stage if their coordinates di↵er by a certain threshold from the
ground truth. In this stage our threshold lets the coordinates di↵er by 1.5% of the page
size, which proved to be sensitive enough when the bounding box encloses a very small
element.

Figure 3 shows a worker going through the training stage. In this example, the workers
are initially requested to draw three boxes, and then we show them the ground truth
boxes so that they compare their boxes against the ground truth. If the workers’ boxes
are not close enough to the ground truth, the worker cannot advance to the labeling
section.

9

Next

Draw a box around each PARAGRAPH

Make sure your boxes wrap the element as closely as possible

Abalo, Callender, Munoz, Nam & Surnin Structure Identification in PDF Documents

Figure 3: Paragraph training stage. The yellow bounding boxes are drawn by the worker, and the
purple ones correspond to the ground truth.

2. Labeling stage:

After the workers successfully go through the training stage, they are allowed to start labeling
the actual pages of the HIT. The workers are then presented with 10 pages to label, and they
do so one by one. During this stage, the boxes drawn will be checked to see if they overlap
with each other. If we any boxes overlap, the worker is then prompted to correct them before
proceeding to the next page.

(See Overlap Checker 1 inside section 4.1.2 for more details on how we check for criteria on
which boxes should overlap and which ones should not.)

Once all pages have been labeled, the worker submits their data and this marks the end of
the HIT. Each box drawn is stored in an array of entries that hold the following information:

(a) document: path of the source document inside our Amazon S3 bucket

(b) height: height of the bounding box adjusted to a scale [0,1]

(c) width: width of the bounding box adjusted to a scale [0,1]

(d) left: left coordinate of the bounding box adjusted to a scale [0,1]

(e) top: top coordinate of the bounding box adjusted to a scale [0,1].

10

2 boxes out of 3 are correct: Redraw & Submit again!
Submit

Abalo, Callender, Munoz, Nam & Surnin Structure Identification in PDF Documents

(f) pageId: id of the page currently being labeled

(g) boxId: id of the bounding box associated with this entry

(h) isValid: boolean value assigned during the validation process 2

4.1.2 Quality assurance features

There are two important elements that help us ensure we get the best results possible from our
HITs: the overlapping checks, and the validation page. These two features help the worker perform
a better job and help us estimate the accuracy of the labeling.

1. Overlap Checker

In both the training and the labeling stages we implemented a feature to prevent box overlaps.
As mentioned in the instructions stage 1a, in most cases structural elements do not overlap
with each other. Since most of the components should not overlap, we can significantly reduce
the error rate by implementing overlap checking. It checks if the smaller of the intersection’s
dimensions (width and height) is greater than 10px. 10px is an appropriate threshold for us
since it is the approximate height of a line (character height + white border padding).

Figure 4 shows two bounding boxes that overlap by more than our threshold. When such
overlaps are triggered, we display a message like the one in the image and request the workers
to fix them. The workers will not be able to proceed in the labeling stage unless they fix the
overlap.

Figure 4: List labeling instructions, page 3. Example of nested lists

For nested lists, overlapping boxes are not necessarily erroneous, as seen in Figure 5. Since
these lists are nested, some bounding boxes will be enclosed by others. This overlap is desired,

11

The labelling may have issues. Remember, you should:
  - not draw overlapping boxes
  - draw boxes that completely enclose the requested element 
     and no other element
 - include as little white space as possible
Redraw & Submit

Submit

1 2 3

Figure 4: Texture’s CrowdCollect tool automatically generates an Amazon Mechanical Turk kit that includes (1) a tutorial for
guiding crowd workers on how to label a structural element (2) a post-tutorial training phase that ensures crowd workers label
elements as accurately as possible and (3) a secret validation task that provides quality control. CrowdCollect also suggests a
grouping of pages into a HIT that optimizes for labeling quality, number of HITs generated and price per HIT. After the tasks
are completed, CrowdCollect filters out poor quality labels.

can label the same document region with the same or different
labels.

Our framework provides primitive methods over bounding boxes
such as same(A, B) which determines if two boxes identify roughly
the same region, accounting for white space margins or overlap(A,
B) which determines if two boxes have overlapping regions.

2.4 Heuristics Interface
Texture allows end-users to search and apply different heuristics.
End-users can choose heuristics based on recency, description, au-
thorship, etc. On selecting one or more heuristics, the document
preview shows users the different structures labeled by these heuris-
tics on the selected document. If a ground truth data set is available

for their document collection, end-users can optionally boost the
performance of their selected heuristics or default to Texture’s ma-
jority vote. As seen in Figure 5, Texture displays the following
performance statistics:

(1) Execution Time: Texture provides information on the execu-
tion time of different heuristics per page and how much of the
document collection has been analyzed. With a large document
collection and a selection of long-running heuristics that perform
complex image analysis for example, structure identification can
take hours. Thus, to ensure interactivity, we prioritize structure
identification on documents currently under preview and we pro-
vide progress information.
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Figure 5: Texture’s User Interface. Texture provides (i) support for searching, applying and boosting multiple structure iden-
tification heuristics, (ii) SelfLabel, a tool for manually annotating documents quickly, (iii) CrowdCollect, a tool for quickly
constructing crowd tasks for labeling different structural elements and (iii) Extract, a tool for writing data extraction rules in
SBEL and, in the future, automatically learning SBEL rules from example extractions.

(2) Precision and Recall Plots: If a ground-truth data set is pro-
vided, we display precision and recall measures with respect to this
data set in the form of multiple PR plots for each structure. Since
the heuristics search table is linked with these visualizations, we
highlight the points representing each heuristic currently selected
in blue.

(3) Confusion Matrix: If a ground-truth data set is available, we
provide a confusion matrix that shows how often the heuristics
labeled it correctly and what other structures it was mistaken for.
Without ground truth, we simply present how often one class was
labeled as another. See Figure 6 for an illustration of how the ma-
trices are computed. These visualizations help users determine the
best combination of heuristics to use given their time constraints
and structures of interest. In the future, we hope to further automate
the application of heuristics that provide the best performance tak-
ing into consideration not only the characteristics of the end-user’s
document collection but also their data extraction rules.

3 EVALUATION
We studied how five senior CS undergraduates developed heuristics
within the Texture framework. Each student was assigned one or
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Figure 6: The Computation of Confusion and Correlation
Matrices and Heat Map Visualizations

two structures for a total of eight structures. While some students
re-implemented complex heuristics from research papers [8], oth-
ers wrote simple ones. Some utilized existing libraries such as the
Stanford CoreNLP library [1]. Across the structures, we found that
heuristics often shared similar strategies. For instance, heuristics
for headers, footers, and titles analyzed the distribution of font size.
Some heuristics for tables and figures analyzed lines that started
with “Fig” or “Table”. Table 1 shows the number of heuristics per
element and provides the average lines of code as a measure of code
complexity: most heuristics were less than a 100 lines of code. Table
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2 provides for each heuristic a brief description of the strategy em-
ployed. These observations affirm our second design consideration;
Since heuristics can encode common conventions of how English
print documents are structured with varying degrees of complexity
and accuracy across document collections, Texture needs to support
multiple weak heuristics and tolerate their individual imperfections.

Data Set and Ground Truth Collection. For each structure, we
sampled 100 pages from four document collections: academic and
white papers, course syllabi, cookbooks and processor specification
sheets. The total cost for the structure identification was 448 USD.
We utilized a total of 800 crowd workers to complete 80 HITs con-
sisting of 10 pages each. Each HIT was completed by 10 different
workers.

Heuristics Performance. Table 1 shows the average precision and
recall for heuristics for each structural element as well as precision
and recall when taking the union of all heuristics for a particu-
lar structure and when taking the majority vote. We find that we
can generally improve precision and recall by such straightfor-
ward schemes even when dealing with documents from multiple
domains.

Structure n
Avg
LOC

Avg
Prec.

Avg
Recall

Union
Prec.

Union
Recall

MV
Prec.

MV
Recall

Title 4 81 0.95 0.59 0.94 0.81 0.95 0.68
Paragraph 3 88 0.78 0.74 0.87 1 0.71 0.6
List 6 55 0.87 0.68 0.89 0.93 0.93 0.84
Header 6 57 0.85 0.57 0.78 0.83 0.98 0.7
Footer 6 50 0.95 0.34 0.91 0.72 0.97 0.41
Figure 5 89 0.95 0.37 0.9 0.75 0.92 0.65
Caption 3 89 0.92 0.36 0.94 0.78 1 0.28
Table 3 174 0.81 0.49 0.86 0.65 0.93 0.45

Table 1: For each structure, students developed n heuristics.
We show here the average lines of code (LOC) as a mea-
sure of code complexity. We also show average precision
and recall, precision and recall when considering the union
of each heuristic group and when considering the majority
vote (MV) ≥ ⌊ n2 ⌋. Note that while union improves recall at
the cost of precision, the MV generally improves precision
and with a few exceptions slightly improves recall.

4 RELATED WORKS
Texture’s goal is to assist end-users in structure identification for
the purposes of more accurate data extraction. There are many
existing works in text extraction, [6, 14, 19, 21], and existing tech-
niques such as Wrapper Induction[20] that are focused on text
extraction over documents with varying levels of structured-ness
from tabulated data to free-flowing text. However, existing systems
tailored towards text extraction do not necessarily support struc-
ture identification, which is an important step in reducing errors
especially in print documents.

There are existing works that do focus on identifying structure,
specifically document understanding [3, 30]. Such works involve
geometric and document structure analysis and identifying the la-
bels of detected box regions. Texture is similar but also aims to sup-
port the usage of such existing algorithms in a collaborative setting.
In the Appendix we briefly describe a variety of techniques studied

to identify specific document structures: we view this literature as
complementary to our work and we encourage the integration of
these techniques as heuristics within Texture.

Similar to CrowdCollect are crowd data collection tools like
Shreddr [4]. Shreddr is a system for digitizing papers in low-
resource organizations. Because data entry workers do not neces-
sarily think about the meaning behind what they are transcribing,
Shreddr limits the task for each worker to transcribe a single field
at a time in order to limit the risk of confusion. CrowdCollect limits
each worker’s identification task to only a single structure at a time
and introduces a variety of error checking strategies (see Figure 4).

Our work is influenced by the data programming paradigm [25]
and its first end-to-end implementation, Snorkel [28]. Snorkel, al-
lows domain experts to label machine learning training data sets
with labeling functions or heuristics. Without any ground-truth
data, Snorkel learns, from the agreements and disagreements of
the labeling functions, a generative model that allows it to estimate
their correlations and accuracies. Snorkel then uses a discrimina-
tive model to generalize beyond its labeling functions. Snorkel’s
implementation, however, makes it difficult to construct labeling
functions over specific document regions and stylistic features as it
only supports text extraction.

Like Texture, Fonduer [29] extracts data with the help of label-
ing functions from richly formatted documents after representing
documents in a unified structured data model. However, it is not
clear how Fonduer identifies such structures in print documents
that do not have a markup. Moreover, Fonduer’s implementation
requires users to abide to the DAG representation of the document
structure. Texture’s data model allows the same region to be labeled
as different structures and does not restrict users to the system’s
interpretation of regions, allowing the user to prefer one label over
another depending on his preferred interpretation of the region
and the data extraction task hand.

Our work complements data-programming systems like Snorkel
and Fonduer as we provide structure identification over print doc-
uments: this allows higher-level functions for data extraction or
knowledge base construction to be developed over now-structured
print documents. Data programming tools and Texture both en-
courage the use of heuristics to encode domain knowledge, and
distinguishes itself from other systems by providing human-in-the-
loop and collaborative tools at different stages through the data
extraction pipeline, including collection of ground truth data.

5 CONCLUSION
In this paper, we presented Texture, a system that enables collab-
oration for structure identification and text extraction. Texture
comes with a suite of tools: an interface for searching, applying,
and boosting multiple structure identification heuristics, SelfLabel
and CrowdCollect to collect ground truth data, and Extract to write
extraction rules over the identified structures. We qualitatively
evaluated Texture and showed that student developers can write
structure identification heuristics with high precision and recall.
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APPENDIX
5.1 Related Works: Specific Structure

Identification Techniques
Texture aims to provide tools for extracting a variety of structural el-
ements, all within a single framework. There are works that extract
a variety of structural elements[9, 10, 12, 13, 17, 18, 22, 27], but some
systems focus on documents from particular domains[2, 23], e.g.
books that have a contents table for forming the logical structure
and that have pages with consistent structure throughout[23].

Existing and specialized methods for extracting specific struc-
tures vary in methodology from machine learning (ML) [15, 26]
to rule-based methods and may even use hybrid methods. In table
extraction, some works use conditional random fields (CRFs) [26],
while others use natural language processing (NLP) techniques [13].
Texture encourages the use of any heuristic.

In figure extraction, the focus is on distinguishing texts from
images from text of other structures. PDFFigures [7] extracts fig-
ures from computer science papers, and can identify text-heavy
figures and distinguish between mathematical symbols and the
article’s main text. PDFFigures depends on caption identification
in order to identify figures. Texture supports the order of execution
of heuristics over differing structures.

Many other works use structure identification in order to achieve
other goals. Futrelle et al. [11] identifies vector-based diagrams in
order to classify bar graphs and non-bar graphs. Texus [27] is a table
extraction and table understanding system and can map the table’s
data values to its labeling cells. Hoffswell and Liu [16] identify
tables to restructure them for mobile phone display.
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Structure ID Description
Title T1 Titles have the largest document font size and are less than 40 characters.

T2 Titles have the largest document font size and are located in the first page.
T3 Titles have the largest document font size and mostly contain capitalized words.
T4 Titles have font sizes larger than the average font size and only contain alphanumeric characters or spaces.

Paragraph P1 Paragraph have the most frequent font size. All lines with this font size are grouped if they are within a certain threshold distance,
which is calculated by the most common distance between text lines in the document.

P2 Similar to P1, except the paragraphs’ font size is not necessarily unique throughout the document.
P3 Paragraphs have more than 80% of its content in its normal case. It uses the case-based TrueCaseAnnotator in the Stanford

CoreNLP library.
List L1 Lists are paragraphs with alignments deeper to the right of the most common left alignment of paragraphs in the document.

L2 Lists are paragraphs that start with a number or a special character.
L3 Lists are sets of lines that begin with the same word and share the same left alignment.
L4 Nested lists are previously identified lists that have deeper alignments from a nearby parent list.
L5 Lists are identified by joining previously identified lists close to each other and if there is a repetition of words or a consecutive

enumeration.
L6 Lists are lines close to each other (similar to L3) and have more than 50% of the lines starting with a special character or number.

Header/Footer HF1 Headers and footers have font sizes less than or equal to the most common font size in the document, and are in the top (header)
or bottom (footer).

HF2 Headers and footers have font sizes slightly larger than the main font size, but not the largest one.
HF3 Headers and footers have similar text content throughout the document, which is measured using the Jaccard similarity measure.
HF4 Headers (or footers) are top lines (or bottom lines) followed (or preceded) by a vertical whitespace that is taller than usual.
HF5 Similar to HF4, but it does not analyze the first page of a document, which could have a different format.
HF6 Headers (or footers) are the top (or bottom) lines of a page (or footer) that contains numbers.

Figure F1 Figures are raster images.
F2 Figures are regions with vector images, which are grouped paths close to each other.
F3 Figures labeled by using F2 and F1 combined.
F4 Figures are labeled by PDFFigures 2 [8].
F5 Figures identified from F4 are removed regions if labeled as tables from other heuristics. This is because PDFFigures consider

tables as figures.
Caption C1 Captions contains specific keywords (e.g. "Table" or "Fig").

C2 Captions are lines of text closest to a figure.
C3 Captions are identified by PDFFigures 2 [8].

Table TB1 Tables have horizontal paths but no vertical ruling line.
TB2 Tables are regions where word density is at least 80% of the page’s average word density.
TB3 Combination of TB1 and TB2.

Table 2: Brief Description of Heuristics
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