
Is this Real? Generating Synthetic Data that Looks Real

Miro Mannino, Azza Abouzied
New York University Abu Dhabi, UAE

{miro.mannino, azza}@nyu.edu

ABSTRACT
Synner is a tool that helps users generate real-looking synthetic
data by visually and declaratively specifying the properties
of the dataset such as each field’s statistical distribution, its
domain, and its relationship to other fields. It provides instant
feedback on every user interaction by updating multiple vi-
sualizations of the generated dataset and even suggests data
generation specifications from a few user examples and inter-
actions. Synner visually communicates the inherent random-
ness of statistical data generation. Our evaluation of Synner
demonstrates its effectiveness at generating realistic data when
compared with Mockaroo, a popular data generation tool, and
with hired developers who coded data generation scripts for a
fee.

CCS Concepts
•Human-centered computing → Interactive systems and
tools;

Author Keywords
Data Generation; Mixed-Initiative UI; Uncertainty
Visualization

INTRODUCTION
Data generation is an important tool for a variety of users from
teachers who teach statistical methods or data science, to soft-
ware designers and developers who demo their systems. Often
these users resort to synthetic data (i) when access to real data
sets is difficult: medical or school records, income data, etc.
are understandably private, (ii) when real data sets are not of
the right granularity: publicly available data through initia-
tives such OpenData.gov are often aggregated, (iii) when real
data sets are not of the right scale: data owners often provide
restricted access to a small subset of their larger and richer
first-party data, or (iv) when real data sets are incomplete: a
poor data sample may be missing key illustrative trends or
key fields entirely. We first motivate our work on realistic
data generation for specific use cases and we then explain the
technical challenges of synthesizing real-looking data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST ’19, October 20-23, 2019, New Orleans, LA, USA

© 2018 ACM. ISBN 978-1-4503-6816-2/19/10. . . $15.00

DOI: https://doi.org/10.1145/3332165.3347866

Motivating Use Cases
In pedagogy, “integrating real data with a context and pur-
pose” is one of the six recommendations put forward by the
American Statistical Association (ASA) on how to best teach
introductory statistics courses in college [8]. By posing and an-
swering questions on real data sets, ASA hopes to improve the
research and problem-solving mindset of students. However,
as Kim et al., who are experienced data science educators, note
the “two goals, to ‘minimize prerequisites to research’ while
also using real-world data are in direct conflict with each other.
On the one hand, one cannot expect novices to immediately
tackle many raw datasets as they exist ‘in the wild,’ thereby
placing barriers to research at a time where there is high risk
of alienating them. On the other hand, to present students with
datasets that are overly curated would betray the true nature of
the work done by statisticians and data scientists ... A careful
and thoughtful balance between these two goals is essential
when preparing datasets for use in introductory statistics and
data science courses” [21].

Kim et al. argue that teaching data must instead satisfy three
R’s: “be rich enough to answer meaningful questions with,
be real enough to ensure that there is context and be realis-
tic enough to convey to students that data as it exists ‘in the
wild’ often needs pre-processing” [21]. They provide the well-
curated fivethirtyeight R real datasets to satisfy these three re-
quirements; the tame datasets, adapted from FiveThirtyEight’s
journalistic data [10], allow students to focus on key learning
concepts as they gradually increase the realism of the data sets.
A major shortcoming of such data sets, tame or otherwise, is
their lack of context or cultural appropriateness: ASA’s exam-
ple data sets include Iowa’s real-estate prices, diamond pricing
data, US teacher salaries and SAT scores; Fivethirtyeight’s
datasets are overwhelmingly US-centric with data on the NBA,
the NFL, March Madness, and US-politics [10]. Thus, while
real, these datasets lack context outside the US or the west-
ern world. Many countries do not have the same data-driven
initiatives as those in the US leading to an absence of alter-
native data sets. Simply relabelling a US data set, such as
US teacher salaries, for another country does not work due its
unique state-specific nature, governing socio-political factors,
educational system, etc. Moreover, many tame datasets often
do not allow the demonstration of complex statistical methods:
stats.stackexchange is awash with synthetic data examples to
either illustrate a data problem or a solution. Data generation
can allow educators to create data sets that not only satisfy
the three R’s but are also appropriately contextualized for
the target student group and illustrative of deeper statistical
concepts.

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

549

https://doi.org/10.1145/3332165.3347866
mailto:permissions@acm.org
https://OpenData.gov
mailto:azza}@nyu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3332165.3347866&domain=pdf&date_stamp=2019-10-17

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [27]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
off to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users from our motivating use cases (data sci-
ence or statistics instructors, software developers and demon-
strators), we anticipate a much larger user base that would
benefit from expressive, and easy realistic data generation. We
make the following assumptions about our target user base:

A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal may
be to expose students to data-driven decision-making. Thus,
she desires a quick, easy to learn, and effective tool for data
generation that can help her focus on her primary goal of
building an overall lesson plan.

A2 Our users have a wide range of programming experience
from novices to experts.

A3 Our users have a wide range of statistical literacy. Some
users prefer to specify precise statistical models to sample data
from; others prefer to visually specify or validate the shape of
the generated data and its relationships.

A4 Our users have a conceptual model of the data that evolves
during specification. Users will often start with initial data
properties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with

Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
sufficiently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and errors
during the data collection and measurement process. Natu-
ral and complex systems are usually open and are difficult to

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

model completely and precisely, hence we rely on stochas-
tic processes and random distributions to best describe them.
Thus, statistical modeling goes hand-in-hand with realistic
data generation. Generating data, however, from well-known,
or custom, statistical distributions is not straightforward. Users
have to correctly parameterize existing generators or look-up
values from the cumulative distribution function of the in-
tended distribution using uniformly distributed random values
(See A2, A4). Finally, users often need to recognize that what
they specify may not be exactly what they get. A frequency
histogram constructed over a small sample of normally dis-
tributed data, for example, will not have the perfect bell shape
commonly associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be due
to domain dependencies, such as when co-generating cities
and countries, mathematical expressions, such as age = year(today)

- year(dateofbirth), and statistical relationships between random
variables, such as men on average being taller than women.
Dependencies introduce ordering constraints on how we gen-
erate data, which if not implemented correctly can make gener-
ation computationally intractable or result in unreal data (See
A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving its
properties. Corrupting a certain proportion of values within a
field often has cascading effects on other fields, which could
break the data generation pipeline. Scaling down a generated
dataset may result in the biased sampling of domains: in our
evaluation, one developer sequentially selected names from
a list of roughly 8000 lexicographically ordered names up to
the data size, which produced small datasets with only names
starting with ‘A.’ Scaling up a generated dataset may result in
unintended repetitions, poor performance, etc. (See A1)

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface design
principle of lifting a domain specific language into an iso-
morphic higher-level visual language that is more natural for
users [13]. Synner lifts from scripts in a data generation lan-
guage to a more intuitive visual domain: Synner generates,
samples and presents data at every user interaction in a famil-
iar spreadsheet visualization, along with histograms and basic
statistics such as mean and standard deviation. These visual-
izations enable users to quickly assess the quality and progress
of their data generation process. The interface cues users on
how to add fields, dependencies and even what distributions
to use or which domains to pick data from. Specification
is not only visual — users can even draw custom univariate
distributions or bivariate relationships — but also declarative.
Users only focus on what the data looks like but not how it
is generated: they do not specify the order of generating data
2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

550

In the preview, spreadsheet, pane, users
can add columns, change data types, add
filters, hide columns as well as add
dependencies. Clicking on ‘Depends on’
produces a menu of existing and new
domain columns on which this column
can depend on.

Synner provides a preview of
the generated data in the
spreadsheet cells, a histogram
for each column as well as a few
statistics. Users can directly
enter a few values to refine
Synner’s data generation
suggestions.

Users can download data in a variety of
formats or download a script for offline
execution using Synners’ command line
tool.

In the detailed specification pane, users
can specify and modify statistical
distribution, domains and visual
relationships as well as view and select
Synner’s data generation suggestions.

Users can specify different data
properties for each dependency
case: e.g. a different distribution
of Life_Evaluation for cases
where Income > 200K

All visual specifications such as this visual relationship
between Income and Life_Evaluation illustrate multiple
generation outcomes to communicate the inherent
randomness of probabilistic data generation.

Figure 1. Synner’s user interface.

fields, or when to optimally apply selection operations (e.g.
when wishing to select only a subset of the generated data), or
how to sample from a statistical distribution, or how to jointly
generate values from related domains such as city and country.
Visually lifting from data generation scripts narrows the gulf
of evaluation as users can immediately evaluate how real their
data looks as they build their dataset. Visual and declarative
specification narrows the gulf of execution as users can focus
on the properties and relationships of their data and not how
to create executable and scalable generation scripts.

2. Example-driven Interaction. To further narrow the gulf
of execution, Synner infers what users wish to generate from
column labels or values manually inserted into the data spread-
sheet. Synner suggests an ordered list of the top five gen-
erator recommendations (e.g. it suggests the domain ‘city’
from entries like ‘Milan’, ‘Cairo’ in the spreadsheet or ‘Lo-
cation’ as the column label; It suggests a normal distribution
with mean µ and standard deviation σ for a few numeric en-
tries, X, entered into the spreadsheet where µ = mean(X) and
σ = stdev(X)). It also suggests dependencies or relationships
between domains, e.g. ‘city’ depends on ‘country’. Synner’s
example-driven interaction helps users who are still unfamiliar
with Synner’s features, or who may wish to explore what data
generation options are available and what domains exist in
Synner’s database, to quickly and easily specify their dataset
properties.

3. Communicating Randomness. Designing data visualiza-
tions that omit the inherent uncertainty in real data and create
the illusion of preciseness can often mislead users and lead
to poor decisions [4, 19, 17]. Similarly, designing a visual
data generation specification tool that does not communicate
the uncertain nature of probabilistic data generation can mis-
lead users and decrease trust in the tool. This mistrust can
be exacerbated by our preconceived misconceptions of ran-
domness. For example, in a publicized classroom exercise
at UC Berkeley, college students at a statistics class, would

regularly alternate between heads and tails with very short
consecutive runs when faking data for 100 coin tosses; data
from 100 actual coin tosses, however, contain longer consecu-
tive runs. People mistakenly assume that a Bernoulli process
self-regulates and that long consecutive runs are extremely
unlikely [3]. Thus, communicating a range of plausible proba-
bilistic data generations for a given specification is important
to not only improve user trust when the outcomes differ from
user expectations, but also to allow users to fine-tune their
specifications.

4. Separation of Concerns. Unlike outliers, errors such as
out-of-bound values, encoding errors, or missing data are not
intrinsic to the data-generation process. With this point of view,
we separate the introduction of realism in the form of errors
and missing data from the generation specification. Errors and
missing values can be introduced post-hoc as corruptions to
the dataset that do not affect dependencies or data generation
order, for example. This viewpoint limits the class of errors
one can easily introduce with Synner, to only those produced
by independent corruption processes. That said, users can
still choose to directly specify the distribution of erroneous or
missing values within the dataset, as if it were part of the data,
with the help of cases, a feature we describe in the following
section.

We describe how we abide by these design principles in Syn-
ner. Table 1 summarizes our design objectives & principles
given our user assumptions, and contrasts them with existing
methods, which are further discussed in related works. As we
walk through Synner, we refer back to these enumerated objec-
tives. In the supplementary material, we describe the technical
systems aspects of Synner that support its interaction features.

We also demonstrate that Synner enables users to easily and
quickly complete data generation tasks when compared with
coding the task or using Mockaroo.

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

551

Objectives & Principles Assumptions Synner Mockaroo
Bayesian

Modeling/Inference
Tools (JAGS/BUGS)

DB Testing & Data
Generation
Languages

Visually lift the generation specification into a higher-level visual language and interface
that is more natural for users

yes partial partial no

Interactively and visually preview summaries of generated data to enable quick
validations of realism

yes no no no

Communicate randomness in the data generation process to enhance trust yes no no no
Declaratively specify properties of the data. Hide implementation and optimization
details on how to sample from distributions, domains, or how to order generation
operators for efficiency, etc.

yes partial yes some/partial

Suggest specifications for distributions, domains and relationships from examples
and interactions through a mixed-initiative UI for effectiveness

yes no no no

Separate corruption processes for errors and missing values from data generation
processes

yes no no no

Infer model parameters from sample data and sample new simulations from models no no yes some

A1, A2
A1, A3, A4
A3
A1, A2
A2, A4
A2

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

In technology, one can draw parallels between demoing a
software-product to potential investors or customers and stag-
ing a house to sell it [26]. In staging a software-product,
software designers often need to populate their systems with
data that their customers can relate to instead of the unimagi-
native ‘test,’ ‘1234,’ and ‘Lorem Ipsum ...’ values for string,
numeric and text fields respectively. This is even more critical
for data analytics or decision-making software, where it pays
o↵ to emphasize the data exploration, visualization, prediction
features, etc. using rich and realistic data. By synthesizing
data instead of using real data, one can minimize distractions
stemming from dirty data or unanticipated trends, and empha-
size software features by ensuring that the demo data set is
rich and complete with respect to the features demoed.

Assumptions about Target Users
In addition to the users (data science or statistics instructors,
software developers and demonstrators) from our motivating
use cases, we anticipate a much larger user base that would
benefit from powerful, expressive, and easy data generation.
We make the following assumptions about our target user base:

1. A1 Our users view realistic data generation as secondary
but essential to a primary task. A teacher’s primary goal
may be to expose students to data-driven decision-making.
Thus, she desires a quick, easy to learn, and e↵ective tool
for data generation that can help her focus on her primary
goal of building an overall lesson plan.

2. A2 Our users have a wide range of programming experi-
ence from novices to experts.

3. A3 Our users have a wide range of statistical literacy.
Some users prefer to specify precise statistical models to
sample data from; others prefer to visually specify or vali-
date the shape of the generated data and its relationships.

4. A4 Our users conceptual model of the data evolves during
specification. Users will often start with initial data prop-
erties and relationships and will iteratively refine these as
they visually preview the generated data.

The Technical Challenges of Generating ‘Real’ Data with
Existing Methods
Rich, real, realistic data generation is a technically complex
task. As we empirically demonstrate, experienced develop-
ers can spend hours writing a data generation script for a
relatively small data set, on the order of ten fields, and still
produce data sets that are not real enough. Software tools
like Mockaroo1 drastically simplify the process but are not
su�ciently expressive. Given the assumptions of our target
users, data generation is complex because we need to:

1. Correctly implement the data-generating process, or the
statistical model, of real data. Randomness is an inherent
property of many real datasets. We introduce noise and
errors during the data collection and measurement process.
Natural and complex systems are usually open and are di�-
cult to model completely and precisely, hence we rely on

1In the related work section, we describe how users specify data
generation tasks with Mockaroo and we describe its limitations.

stochastic processes and random distributions to best de-
scribe them. Thus, statistical modeling goes hand-in-hand
with realistic data generation. Generating data, however,
from well-known, or custom, statistical distributions is not
straightforward. Users have to correctly parameterize ex-
isting generators or look-up values from the cumulative
distribution function of the intended distribution using uni-
formly distributed random values (See A2, A4). Finally,
users often need to recognize that what they specify may
not be exactly what they get. A frequency histogram con-
structed over a small sample of normally distributed data,
for example, will not have the perfect bell shape commonly
associated with normal distributions (See A3).

2. Correctly implement the many (probabilistic) relation-
ships between fields. Dependencies across fields can be
due to domain dependencies, such as when co-generating
cities and countries, mathematical expressions, such as age =

year(today) - year(dateofbirth), and statistical relationships between
random variables, such as men on average being taller than
women. Dependencies introduce ordering constraints on
how we generate data, which if not implemented correctly
can make generation computationally intractable or result
in unreal data (See A1, A2).

3. Carefully introduce errors and missing values and easily
scale2 up or down the size of the data set while preserving
its properties. Corrupting a certain proportion of values
within a field often has cascading e↵ects on other fields,
which could break the data generation pipeline. Scaling
down a generated dataset may result in the biased sampling
of domains: in our evaluation, one developer sequentially
selected names from a list of roughly 8000 lexicographically
ordered names up to the data size, which produced small
datasets with only names starting with ‘A.’ Scaling up a
generated dataset may result in unintended repetitions, poor
performance, etc. (See A1)

A1 A2 A3 A4 O1 O2 O3 O4 O5 O6 O7

Synner’s Design Principles
To address the above challenges, we designed Synner with the
following design principles:

1. Visual Lifting & Declarative Specification. Heer et al.
coin the term visual lifting to describe the interface de-
sign principle of lifting a domain specific language into an
isomorphic higher-level visual language that is more natural
for users [12]. Synner lifts from scripts in a data genera-
tion language to a more intuitive visual domain: Synner
generates, samples and presents data at every user inter-
action in a familiar spreadsheet visualization, along with
histograms and basic statistics such as mean and standard
deviation. These visualizations enable users to quickly as-
sess the quality and progress of their data generation process.
The interface cues users on how to add fields, dependencies
and even what distributions to use or which domains to
pick data from. Specification is not only visual — users

2In this work, we examine data scales of the order of hundreds of
records to hundreds of thousands of records (See Conclusion for
more details).

Table 1. Synner’s design principles and objectives. We list whether (some of) these methods provide partial or no support for a given objective. The
related word section provides further details.

It is important to point out that many big data benchmark-
ing systems have often focused on generating big data that
satisfy the three V’s: volume, velocity and variety, ignoring
realism [12]. In a recent survey of such systems, Han et al.,
emphasize that veracity is the fourth, albeit unconsidered,
essential ‘V’ of big data benchmarking systems: “Veracity
reflects whether the data used in big data systems conform to
the inherent and important characteristics of raw data. This
property is important to guarantee the reality and credibility
of benchmarking results” [12]. Of the 16 data benchmarking
systems studied, however, only 5 systems partially consider
veracity by either using statistical distributions to generate the
data or ensuring the raw data format (table, graph, text) is
preserved [12]. Han et al. explain that perhaps the absence
of standard mechanisms to measure the degree of conformity
of a synthetic data set to a real one is partly to blame for the
lack of veracity in these systems [12].

Thus, in addition to designing Synner to enable easy and
expressive data generation, we put forward a user-centered
method for evaluating how fake or real a data set is: a data set
is real enough if it passes user-provided checks specific to a
given dataset. We show that datasets generated by Synner out-
perform developer- or Mockaroo- generated data with respect
to these checks.

We conclude this paper by discussing related works and their
influence on Synner’s design and discussing current limita-
tions that we hope to address in the future.

GENERATING DATA WITH SYNNER
To ground our discussion of Synner’s interface and design,
we walk through how Imani, an Economics professor who
teaches at a small college, generates a dataset to allow her
first-year quantitative methods students to analyze the relation-
ship between happiness and income. She bases her generated
dataset on the results of a recent study that explores income
and happiness across the world [18] and uses the Gallup World
Poll dataset [1], which is not publicly available. She wishes
to generate roughly 5000 data points. She hopes her students
would analyze and visualize the dataset, which she explains
represents a fictitious nearby nation, to explore and discuss
issues of income- and education- inequality, as well as the

Sex (M, F)

Years of Education ~N(10, 2.5)

Income ~[500, 200K]Women earn less
on averageW

om
en
spend

less

years in
school

Inc
om
e a
nd
ed
uc
at
ion

ar
e p
os
itiv
ely
co
rre
lat
ed

3

6

500 200K40K

LE

Income

Life Evaluation (Integer in [0, 10])

Figure 2. Imani sketches this schema, which describes the dataset she
wishes to generate and the relationships between the different fields.

relationship between income and happiness. She sketches the
data schema in Figure 2.

Synner’s interface is split into main panes: a preview, spread-
sheet pane at the top, which allows users to add columns,
change data types, add dependencies, enter a few example
entries to refine Synner’s suggestions as well as filter rows,
hide columns and add errors or missing values, and a detailed
specification pane at the bottom that allows users to visually
specify and modify statistical distributions, domains and visual
relationships, as well as view and select Synner’s suggestions
for data generation (See O1, O4, O5). Figure 1 illustrates
Synner’s interface after Imani completes her data generation
task.

Domains & Enumerations
Imani begins by creating the sex column: she selects the data
type as ‘string’ and enters the column label: ‘Sex’. Even
with only these interactions, Synner suggests the domain Sex,
which has a natural frequency of 50% male, 50% female. Syn-
ner’s database has tables describing several domains including
city, country, name, last name, plant, as well as relationship
tables that relate a pair of domains such as city and country.
Users can upload their own domain and relationship tables as
well into the database.

Imani enters ‘M’ and ‘F’ in the cells of the Sex column and
Synner suggests an enumeration of values ‘M’ and ‘F’. Imani
prefers this suggestion as it allows her to visually control the
proportion of males and females in her dataset: she sets the
ratio of male to female at 3:2. Synner interprets the specifica-
tion as a discrete probability distribution on the enumeration
(See Figure 3).

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

552

Figure 3. Imani specifies the ratio of males to females in her dataset with
the help of an enumeration.

Figure 4. Synner suggests different distributions from a few examples
entered by Imani in the Years of Education column

Synner can also generate strings from regular expressions. For
example, if Imani specifies M|Male in the enumeration, Synner
will randomly generate either ‘M’ or ‘Male’ strings. Synner
converts the expression into an automata and then randomly
walks through the automata to generate matching strings3.

Example-driven interaction
Imani then creates the years of education column with an
integer data type. She enters a few entries in the cells and
Synner produces the suggestions in Figure 4.

Synner employs multiple algorithms to determine the best
suggestions for a given column label, data type and column-
entries (See O5). Synner first searches its domain database
for partial matches between table names and column labels
using an edit-based string similarity score. This allows Synner
to suggest the domain ‘name’ and ‘surname’ when the user
labels a column as ‘First Name.’ Synner then finds matches
between example entries and all values within the domain
tables using a k-nearest neighbor matching algorithm. If there
are no matching domains in the database, Synner also suggests
an enumeration with the entries provided by the user: the fre-
quency of each entry is used to set the initial proportions of
each value. Finally, for numeric or date/time data types, Syn-
ner suggests statistical distributions with parameters inferred
from the few user-provided examples, or sequences such as
serial numbers, serial dates, times, etc. with gaps that match
the gaps between the user-provided entries.

Synner’s suggestions extend beyond the properties of a single
column: when a user clicks on the ‘depends on’ menu for a
particular column, Synner also suggests related fields from
the domain database. For example, if a user creates a column
of country names, the ‘depends on’ menu will suggest other
fields, which may have not yet been created by the user, from

3Synner supports all regular expression operators including ∗; it
terminates a string generation if it executes for more than a pre-
configured time limit.

Figure 5. Imani specifies the relationship between years of education and
sex using dependencies by cases. Synner illustrates the many plausible
data generation outcomes using the Layers visualization. Hovering over
a layer reveals the underlying histogram.

the domain database such as ‘city’, or ‘continent’. There is no
strict hierarchy for such dependencies, which allows ‘country’
to depend on ‘continent’ and vice-versa. To enable these rich
relationships, the domain database stores each domain in an
independent table and then stores pairwise relationships in a
relationship table. To determine the available relationships for
a domain, Synner computes the transitive closure on pairwise
relationships. During data generation, Synner materializes
relationships such as one between city and region by comput-
ing a join on the available intermediate pairwise relationships,
such as those between city and country, and country and re-
gion, and then samples data from the join. See Figure 3 in
the supplementary material for an example of these tables
and the computed transitive closure. Through a simple csv
upload interface, one can add more domains and relationships
to Synner’s database.

We find that our simple strategies for supporting example-
driven interaction quite effective: as we show later in our
evaluation of Synner, users often picked Synner’s recommen-
dations and tweaked them (e.g. changed a distribution’s pa-
rameters) instead of manually specifying the data properties
using Synner’s menus.

Communicating Randomness
Imani selects the normal distribution from Synner’s sugges-
tions and adjusts the mean and standard deviation to 10 years
and 2.5 respectively. Synner communicates to Imani the out-
comes of many plausible data generations (See O3) using the
Layers visualization in Figure 5.

To produce the Layers visualization, we generate 20 samples
with as many data points as the dataset size, up to a config-
urable limit to ensure interactive performance, by sampling
from the specified data distribution. We then construct a his-
togram with 50 equal-width bins for each sample. We connect
the midpoints of each bin’s frequency to form a smooth curve.
We shade the area between the curve and the curve of an ideal
histogram, one constructed from the distribution’s cumulative
density function, with a low opacity color. More opaque re-
gions in the visualization represent overlapping areas. This
visualization not only illustrates plausible histograms but also

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

553

illustrates which ones are more likely than others through
opacity. On hovering over a layer, Synner overlays the ac-
tual histogram that created the layer. We believe this novel
visualization is easier to interpret and more effective at commu-
nicating the outcomes of data generation than less-grounded
visualizations that present abstract measures such as confi-
dence intervals or probability density functions. We apply
Layers to any visualization that presents statistical distribu-
tions including enumerations and visual relationships.

We conducted a mini user study with 32 participants, under-
graduate students who completed an introductory statistics
class, to determine the most effective visualization for commu-
nicating randomness. We compared Layers with three other
alternatives presented in Figure 6:

1. Min-Max bounds: Like Layers, we generate 20 equal-width
histograms for 20 samples. We shade the area between the
histogram with the lowest frequency and the one with the
highest frequency.

2. Lines: We only show the curves of the 20 sample histograms.
In this visualization, the area surrounding the ideal visual-
ization is tightly packed with lines. This visualization is in-
fluenced by Boukhelifa et al.’s use of sketchiness as a visual
variable to communicate impreciseness in that surround-
ing the ideal histogram are multiple sketches of plausible
generated histograms.

3. Inferred lines: This is perhaps the most abstract visualiza-
tion we evaluated: for each of the 20 samples, we inferred
the most-likely parameters of the distribution and then plot-
ted the curve associated with the ideal histogram of the
distribution with those parameters. In Figure 6, each line
represents a slightly different Gaussian distribution than the
one specified: each line has a different mean or standard
deviation derived from one of the 20 samples.

In our study, we divided the participants into four groups to
evaluate the effectiveness of each visualization in a between-
subjects study. In each group, we explained to the participants
how the visualizations are generated and how to interpret them.
We then tested three different statistical distributions arising
in three data generation scenarios: Gaussian for employee
ages with a mean of 30 years and a standard deviation of 5,
Exponential for time to sell laptops with a rate of 1 week, and
Gamma for call center waiting times with shape = 3 and scale
= 2 for a mean waiting time of 6 minutes. For each scenario
we presented in randomized order four histograms of datasets
that fit within the distribution to varying degrees: a good fit
with high p-values for the Chi-squared goodness-of-fit statistic,
adequate fit with a borderline p-value slightly higher than 0.05,
a poor fit with a p-value slightly lower than 0.05 and one with
p-value close to zero. Each participant was asked to decide,
given the visualization of the specified distribution and the
histogram, whether the dataset visualized by the histogram
was generated by the specified distribution or not. Figure 6
presents the results of the experiment4. Since we wanted a
visualization that allowed users to correctly discern the quality
4Given the relatively small size of only eight users for each visualiza-
tion group, we interpret the results of Figure 6 qualitatively to guide

of a generated sample irrespective of the distribution, we chose
Layers: users generally accepted good fits and rejected poor
fits. We also considered Min-Max bounds but users were likely
to reject good fit samples simply because a bar fell out of the
shaded area.

Note that even though our participants understood that a finite-
sample distribution can introduce randomness and the degree
of this randomness depends on sample size5, they still found
our visualizations helpful in determining fit. By visually recog-
nizing that a sampling distribution can have multiple outcomes,
some of which are less than ideal, users are more likely to
trust Synner’s generated data even if it deviates from their
conceptual model.

Dependencies by Cases
Imani now specifies that years of education depends on sex
using the ‘depends on’ menu at the top of the column. This
allows Imani to specify the following two cases in the bottom
pane: if the sex is female, then years of education is normally
distributed around 9 years with a standard deviation of 4, and if
the sex is male then years of education is normally distributed
around 11 years with a standard deviation of 2.5. She tries
different parameters before she settles on these values (See
Figure 5). She also examines the histogram above the years
of education column to make sure that she is content with the
overall distribution of values. Synner lets Imani specify depen-
dencies declaratively (See O4). However, to ensure that Imani
does not introduce cyclical dependencies, Synner displays an
error message if Imani tries to make sex dependent on years
of education either directly or indirectly as dependencies are
transitive. Synner uses dependencies to determine the order
of data generation by constructing a directed acyclic graph
(DAG) from all dependencies.

Dependencies by Visual Relationships & Expressions
Imani now adds a new column for Income with an integer data
type. She declares that Income depends on sex and years of
education. She creates two cases for each sex and for each
case she specifies the relationship between years of education
and income visually as a linear relationship where the mean
income is centered on the line (See O1). She then adds some
Gaussian noise with a standard deviation of 13,000 dollars.
She creates two such linear relationships: the female linear
trend is shifted lower than the male one. Alternatively, Imani
could have specified two mathematical expressions to describe
the relationship between years of education and income for
each sex.

Finally, she adds a new column for Life Evaluation — a 0-10
score on Cantril’s Self-Anchoring Striving Scale [7], with 0
representing the ‘worst possible life’ and 10 representing the
‘best possible life’. Using the plot of life evaluation against
income by world regions, Imani declares that Life Evaluation
depends on Income and sketches the following visual relation-
ship between income and life evaluation. As she controls how
much noise is added to the relationship, Synner communicates

the design of Synner, and we do not test for statistically significant
differences across the groups.
5Sampling distributions were covered in the introductory statistics
course.

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

554

Normal
(μ = 30, σ2=5)

Exponential
(λ = 1)

Gamma
(k = 3, θ = 2)

0

1

.5

Abhimanyu Vasishth Synner: The Design and Implementation of a Usable Data Generation Tool

(a) Smooth Lines (b) Smooth Layered (c) Smooth Min-Max (d) Inferred Lines

Figure 2: Visualization Techniques Studied

2. Smooth Layered - For each sample, the area between the smoothed edge of the histogram
created and the theoretical probability distribution curve is shaded with a low opacity. This
leads to a visual picture where areas of high opacity represent overlapping areas. The users
would now interpret opacity as a visual variable representing uncertainty in probabilistic data
generation and will try to see how well the histogram fits within the dark and light blue areas
in the distribution. If the histogram fits within these regions, users would interpret that
histogram as fitting within the distribution and its associated uncertainty.

3. Smooth Min-Max - The smoothed histograms are created for each of the 20 samples and
the area between the highest point in each bucket across all samples and the lowest point in
each bucket across all samples is shaded in a uniform color. Essentially, this means that the
smooth histograms for all 20 samples are contained within this blue area. Users would now
try to determine whether the histogram corresponding to the sample fits within the blue area
and rate the histogram accordingly.

4. Inferred Lines - Each of the 20 samples generated has a particular parameter value. A smooth
curve is created for each sample using its parameter values. For example, if the user specifies a
Gaussian distribution with mean 100, and standard deviation of 10 but a one of the generated
samples has mean 101 and standard deviation of 11, we plot the probability density curve
for this sample assuming a Gaussian distribution with mean 101 and standard deviation 11.
The empirical uncertainty consists of 20 such curves.

This curve is a probability density curve and not a histogram-based plot. The area under a
probability density curve needs to be 1, therefore the y-axis values in a probability density
function may be di↵erent than a histogram-based plot of the same distribution. For example,
y-values in a probability density curve can go beyond 1 but in the case of a normalized
histogram based plot, y-values cannot go beyond 1 since the total number of points in a
single bucket of the histogram cannot be greater than the total number of points used to
create the histogram. We explained the di↵erence in y-values to participants at the start
of the user study to ensure that participants do not base their scores on discrepancies in
the y-axis values between the probability density curve on the left and the histogram of the
sample on the right.

We carried out our user study on 32 (19 male, 13 female) participants, who were undergraduate
students. All our participants had a formal knowledge of basic statistics, which we confirmed with
a few validation questions in the beginning of our experiment. Each participant was only shown 1
visualization technique for all three distributions. Participants were divided equally into 4 groups,
one for each visualization technique and the distributions as well as the 4 chosen samples were
shown to participants in a randomized order.

7

Abhimanyu Vasishth Synner: The Design and Implementation of a Usable Data Generation Tool

(a) Smooth Lines (b) Smooth Layered (c) Smooth Min-Max (d) Inferred Lines

Figure 2: Visualization Techniques Studied

2. Smooth Layered - For each sample, the area between the smoothed edge of the histogram
created and the theoretical probability distribution curve is shaded with a low opacity. This
leads to a visual picture where areas of high opacity represent overlapping areas. The users
would now interpret opacity as a visual variable representing uncertainty in probabilistic data
generation and will try to see how well the histogram fits within the dark and light blue areas
in the distribution. If the histogram fits within these regions, users would interpret that
histogram as fitting within the distribution and its associated uncertainty.

3. Smooth Min-Max - The smoothed histograms are created for each of the 20 samples and
the area between the highest point in each bucket across all samples and the lowest point in
each bucket across all samples is shaded in a uniform color. Essentially, this means that the
smooth histograms for all 20 samples are contained within this blue area. Users would now
try to determine whether the histogram corresponding to the sample fits within the blue area
and rate the histogram accordingly.

4. Inferred Lines - Each of the 20 samples generated has a particular parameter value. A smooth
curve is created for each sample using its parameter values. For example, if the user specifies a
Gaussian distribution with mean 100, and standard deviation of 10 but a one of the generated
samples has mean 101 and standard deviation of 11, we plot the probability density curve
for this sample assuming a Gaussian distribution with mean 101 and standard deviation 11.
The empirical uncertainty consists of 20 such curves.

This curve is a probability density curve and not a histogram-based plot. The area under a
probability density curve needs to be 1, therefore the y-axis values in a probability density
function may be di↵erent than a histogram-based plot of the same distribution. For example,
y-values in a probability density curve can go beyond 1 but in the case of a normalized
histogram based plot, y-values cannot go beyond 1 since the total number of points in a
single bucket of the histogram cannot be greater than the total number of points used to
create the histogram. We explained the di↵erence in y-values to participants at the start
of the user study to ensure that participants do not base their scores on discrepancies in
the y-axis values between the probability density curve on the left and the histogram of the
sample on the right.

We carried out our user study on 32 (19 male, 13 female) participants, who were undergraduate
students. All our participants had a formal knowledge of basic statistics, which we confirmed with
a few validation questions in the beginning of our experiment. Each participant was only shown 1
visualization technique for all three distributions. Participants were divided equally into 4 groups,
one for each visualization technique and the distributions as well as the 4 chosen samples were
shown to participants in a randomized order.

7

Abhimanyu Vasishth Synner: The Design and Implementation of a Usable Data Generation Tool

(a) Smooth Lines (b) Smooth Layered (c) Smooth Min-Max (d) Inferred Lines

Figure 2: Visualization Techniques Studied

2. Smooth Layered - For each sample, the area between the smoothed edge of the histogram
created and the theoretical probability distribution curve is shaded with a low opacity. This
leads to a visual picture where areas of high opacity represent overlapping areas. The users
would now interpret opacity as a visual variable representing uncertainty in probabilistic data
generation and will try to see how well the histogram fits within the dark and light blue areas
in the distribution. If the histogram fits within these regions, users would interpret that
histogram as fitting within the distribution and its associated uncertainty.

3. Smooth Min-Max - The smoothed histograms are created for each of the 20 samples and
the area between the highest point in each bucket across all samples and the lowest point in
each bucket across all samples is shaded in a uniform color. Essentially, this means that the
smooth histograms for all 20 samples are contained within this blue area. Users would now
try to determine whether the histogram corresponding to the sample fits within the blue area
and rate the histogram accordingly.

4. Inferred Lines - Each of the 20 samples generated has a particular parameter value. A smooth
curve is created for each sample using its parameter values. For example, if the user specifies a
Gaussian distribution with mean 100, and standard deviation of 10 but a one of the generated
samples has mean 101 and standard deviation of 11, we plot the probability density curve
for this sample assuming a Gaussian distribution with mean 101 and standard deviation 11.
The empirical uncertainty consists of 20 such curves.

This curve is a probability density curve and not a histogram-based plot. The area under a
probability density curve needs to be 1, therefore the y-axis values in a probability density
function may be di↵erent than a histogram-based plot of the same distribution. For example,
y-values in a probability density curve can go beyond 1 but in the case of a normalized
histogram based plot, y-values cannot go beyond 1 since the total number of points in a
single bucket of the histogram cannot be greater than the total number of points used to
create the histogram. We explained the di↵erence in y-values to participants at the start
of the user study to ensure that participants do not base their scores on discrepancies in
the y-axis values between the probability density curve on the left and the histogram of the
sample on the right.

We carried out our user study on 32 (19 male, 13 female) participants, who were undergraduate
students. All our participants had a formal knowledge of basic statistics, which we confirmed with
a few validation questions in the beginning of our experiment. Each participant was only shown 1
visualization technique for all three distributions. Participants were divided equally into 4 groups,
one for each visualization technique and the distributions as well as the 4 chosen samples were
shown to participants in a randomized order.

7

Abhimanyu Vasishth Synner: The Design and Implementation of a Usable Data Generation Tool

(a) Smooth Lines (b) Smooth Layered (c) Smooth Min-Max (d) Inferred Lines

Figure 2: Visualization Techniques Studied

2. Smooth Layered - For each sample, the area between the smoothed edge of the histogram
created and the theoretical probability distribution curve is shaded with a low opacity. This
leads to a visual picture where areas of high opacity represent overlapping areas. The users
would now interpret opacity as a visual variable representing uncertainty in probabilistic data
generation and will try to see how well the histogram fits within the dark and light blue areas
in the distribution. If the histogram fits within these regions, users would interpret that
histogram as fitting within the distribution and its associated uncertainty.

3. Smooth Min-Max - The smoothed histograms are created for each of the 20 samples and
the area between the highest point in each bucket across all samples and the lowest point in
each bucket across all samples is shaded in a uniform color. Essentially, this means that the
smooth histograms for all 20 samples are contained within this blue area. Users would now
try to determine whether the histogram corresponding to the sample fits within the blue area
and rate the histogram accordingly.

4. Inferred Lines - Each of the 20 samples generated has a particular parameter value. A smooth
curve is created for each sample using its parameter values. For example, if the user specifies a
Gaussian distribution with mean 100, and standard deviation of 10 but a one of the generated
samples has mean 101 and standard deviation of 11, we plot the probability density curve
for this sample assuming a Gaussian distribution with mean 101 and standard deviation 11.
The empirical uncertainty consists of 20 such curves.

This curve is a probability density curve and not a histogram-based plot. The area under a
probability density curve needs to be 1, therefore the y-axis values in a probability density
function may be di↵erent than a histogram-based plot of the same distribution. For example,
y-values in a probability density curve can go beyond 1 but in the case of a normalized
histogram based plot, y-values cannot go beyond 1 since the total number of points in a
single bucket of the histogram cannot be greater than the total number of points used to
create the histogram. We explained the di↵erence in y-values to participants at the start
of the user study to ensure that participants do not base their scores on discrepancies in
the y-axis values between the probability density curve on the left and the histogram of the
sample on the right.

We carried out our user study on 32 (19 male, 13 female) participants, who were undergraduate
students. All our participants had a formal knowledge of basic statistics, which we confirmed with
a few validation questions in the beginning of our experiment. Each participant was only shown 1
visualization technique for all three distributions. Participants were divided equally into 4 groups,
one for each visualization technique and the distributions as well as the 4 chosen samples were
shown to participants in a randomized order.

7

Layers Min-Max Bounds Lines Inferred Lines

p >> 0.05 p > 0.05 p < 0.05 p << 0.05Degree of
Goodness of Fit Good Fit Poor Fit

Av
er

ag
e

Us
er

Ag

re
em

en
t o

n
Fit

Normal
(μ = 30, σ2=5)

Exponential
(λ = 1)

Gamma
(k = 3, θ = 2)

Normal
(μ = 30, σ2=5)

Exponential
(λ = 1)

Gamma
(k = 3, θ = 2)

Normal
(μ = 30, σ2=5)

Exponential
(λ = 1)

Gamma
(k = 3, θ = 2)

Figure 6. Results of a focused user study on how best to visualize the uncertainty associated with generating data for a given distribution.

several plausible data generation outcomes to her. On hov-
ering at a layer, Synner reveals a scatterplot that shows the
distribution of data points for that layer (See Figure 1).

Imani is content with her overall dataset but she notices that
some of the values in Life Evaluation fall below 0 or are above
10. She decides to filter out these points using the selection
operation. As she types her criteria, Synner also highlights the
rows that remain after the operation (See Figure 7). Synner
decides whether to push down selection operations or apply
them after generating the dataset to ensure efficient runtime
performance.

In the supplementary material, we further discuss the seman-
tics of dependencies.

Missing Values, Errors & Outliers
Imani can also add errors, or missing values to individual
columns within her dataset by specifying the proportion of
missing or erroneous values (See Figure 7). Synner only cor-
rupts the values of a field after completely generating the data
set to ensure that missing values and errors do not cascade
to dependent fields or break the data generation process (See
O6).

Imani can also add more complex errors beyond the default
ones such as outliers, or broken dependencies: Imani intro-
duces an indicator column and sets the proportion of its value
being true to 0.1%. She specifies that Income now also de-
pends on the indicator. She adds a case that when true, Income
is described by an outlier distribution with a mean income of
500K, that is independent of sex or years of education.

Imani can either download her dataset in CSV or JSON format
or save the declarative data generation script to upload later
into Synner’s interface to further modify it, or directly execute
it using our command line tool to get a dataset of any size.

EVALUATION
To evaluate whether Synner’s design supports realistic data
generation, we conducted a within-subjects study comparing
Synner with Mockaroo, and a between-subjects study with
hired, experienced, developers. Our main hypotheses were:

(a) (b)

Figure 7. (a) Synner highlights rows that satisfy the selection opera-
tion. On accepting the selection criteria, non-highlighted rows will be
filtered out, (b) Synner adds two bars to the overall column histogram
to indicate the proportion of missing or error values.

H1 Users will spend less time specifying more complex data
generation tasks in Synner than with Mockaroo or with custom
scripts (even when recruiting experienced developers).

H2 Users will generate more realistic data sets with Synner
than with alternatives as judged by an external group of realism
checkers.

Our findings support both hypotheses. In the following sec-
tions we provide details on participants, experimental methods
and analysis.

Participants and Methods
The End-Users. We conducted a within-subjects user study
of Synner against Mockaroo with 18 participants from an
academic institute: 15 undergraduates, 3 graduate students;
14 have a computer science background. Only 4 participants
had some experience generating data with python, Matlab, or
online statistical generators. We believe these participants are
generally representative of users who may wish to use data
generation tools. For example, of the 14 CS students, some
may demo software tools in the future.

We trained the participants on each tool. We presented a
video for each tool that demoed several features and briefly
described the syntax of the expression language for both tools.
We paused the demonstration regularly to respond to questions,
to clarify any confusions and to make sure that the users can
use the features themselves. We concluded each 10-15 minute

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

555

tutorial with a 15 minute play task, where we asked users to
generate a toy dataset of buildings with several dependencies
such as one between building height and year of construction
and one between number of residential floors and height. They
also added domain data such as city, or names to assign build-
ing names. We answered questions during this process and
guided users on how to use certain features.

The Developers. We also recruited ten participants to develop
data generation scripts (5 from Freelancer.com and 5 CS grad-
uate students). We selected experienced Freelancer developers
by ensuring they had a customer rating above 4.8/5. Also, we
selected graduate students who had experience synthesizing
data for experiments or demos. All ten participants chose
to write their scripts in Python. These developers were fi-
nancially compensated for their code. The average payment
for Freelancer developers was 43 USD. All graduate students
received 50 USD.

Data Generation Tasks. We asked all participants to generate
three synthetic datasets:

1. Birth Records (BR), with fields: name, last name, date of
birth, gender, mother’s name, mother’s last name, father’s
name, father’s last name.

2. Train Schedules (TS), with fields: departure city, departure
country, departure time, arrival city, arrival country, arrival
time. We limited the countries to only those within the
western European region (Austria, Belgium, France, Ger-
many, Liechtenstein, Luxembourg, Monaco, Netherlands,
Switzerland).

3. Age & Height Pediatric Records (AH), with fields: gender,
age, and height. Age is between 2-16. We provided the
CDC growth charts as a reference on how age and height
are correlated.

We asked users to strive for realism. Other than the informa-
tion above, we did not provide additional specifications or
requirements. We randomized the order of tasks and, to alle-
viate learning effects, we randomized which tool participants
generated the data with first. We also asked the participants
to spend up to two minutes before using either tool to draft
on paper the properties of the different fields and how they
relate to each other. This minimized the time spent thinking
about the dataset’s properties while using each tool. We also
observed that users tried to specify the properties they drafted
independent of their failures or successes specifying them in
the previous tool.

We provided developers the same minimal specifications, ac-
cess to plain text lists of female and male names, cities by
country for the nine western European countries, and growth
charts. We also asked them to strive for realism. We required
their scripts to be executable from command line with dataset-
size passed as a command-line parameter. We required the
scripts to output the datasets as comma-separated value files.
We provided an example of how we intend to run the script in
command line and a sample output csv file for reference.

Each task explored different data generation challenges. For
BR, most participants tried to create (i) a simple uniform

0 100 200 300 400 500
Self-reported time to complete data generation tasks (minutes)

BR GR

FL

TS GR

FL

AH GR

FL

0 10 20 30 40 50 60
% of extra bits required to encode correct distribution

SY

MK

GR

FL Approximating by a random distribution (15.60%)

0 5 10 15 20
Time to complete data generation task (minutes)

BR SY

MK

TS SY

MK

AH SY

MK

Figure 8. For each of the three tasks, we present each user’s task comple-
tion time on Synner (SY) and Mockaroo (MK). Black bars show mean
task completion times.

distribution for gender, (ii) dependencies to ensure gender-
typical names, and (iii) relationships to reflect the cultural
norm of sharing a last name with at least one of the parents. For
TS, most participants tried to create (i) domain dependencies
to ensure that cities exist within their respective countries, and
(ii) statistical (or formulaic) relationships between departure
time and arrival time. Finally for AH, most participants tried
to create the complex statistical relationship between age and
height as visually illustrated by the growth charts.

In terms of task complexity with respect to Mockaroo, BR
was least complex as the domain dependency between names
and gender is automatically inferred and applied without user
intervention. TS was slightly more complex as it required the
specification of mathematical expressions to relate departure
and arrival times and AH was most complex.

We limited the evaluation to these specific tasks because they
can be expressed in Mockaroo. Even slight modifications to
the tasks made them too complex to immediately express in
Mockaroo. For example, it is not possible to restrict departure
city to one set of countries, and arrival city to a different set of
countries: this currently breaks domain dependencies. Speci-
fying gender using custom lists with a non-uniform probabil-
ity distribution makes it impossible to assign gender-typical
names. To recreate the simple case dependency, of years of
education on gender, in Imani’s dataset with Mockaroo, one
would have to create two hidden columns with different nor-
mal distributions for each gender, with values pulled from
one column, ∼ N(9, 4), for ‘females’ and the other column,
∼ N(10, 2.5), for ‘males’: this convoluted trick took roughly
an hour for us to figure out! Finally, expressions in Mockaroo
are written in Ruby: most of our participants were not famil-
iar with Ruby’s syntax. In Synner, expressions are written
in JavaScript and an auto-suggest feature allows users, who
are not familiar with JavaScript to easily specify them. We
also did not evaluate adding errors or missing values as we
found Mockaroo’s behavior inconsistent for missing values: a
missing value may or may not affect a dependent value.

Comparative User-Study Results

Task Completion Time
Figures 8 and 9 illustrate each participant’s task completion
time for each task and tool or developer group. Writing data
generation code is two orders of magnitude slower than using
GUI tools to generate data.

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

556

https://Freelancer.com

0 100 200 300 400 500
Self-reported time to complete data generation tasks (minutes)

BR GR

FL

TS GR

FL

AH GR

FL

Mean LOC
76

112

63

102

91

114

Figure 9. For each of the three tasks, we present each developer’s task
completion time separated by group, Freelancer developers (FL) and
graduate students (GR). Black bars show mean task completion times.
We show the mean lines of code (LOC) for each task as well.

To evaluate completion times for tool users, we performed a
two-way repeated-measures ANOVA with task and tool-used
as independent factors. We log-transformed the completion
times to better approximate a normal distribution6. We found
a significant interaction effect F2,34 = 8.153, p = .001. We
find the following simple main effects: for the least com-
plex task (BR) and the most complex task (AH), there was
a statistically significant difference in completion times with
F1,17 = 6.537, p = .02 and F1,17 = 7.939, p = .01 respectively.
We observed that users often hit a ‘cliff’ of complexity with
Mockaroo: For example, if they couldn’t express the intended
relationship between arrival and departure times, they settled
for uniformly random times for both. Of the six users that
spent less than 5 minutes specifying the AH task on Mockaroo,
four did not even attempt to formulate a relationship between
age and height and specified height as a random value within
a fixed range. One user incorrectly declared height = age×2.
Note that the relationship between height and age is roughly
linear (with minimal tapering between 15 and 16) and it can be
directly estimated from the growth charts as height = age×6 +
75, with some added random noise, and some shifts introduced
to account for gender differences.

Dataset Realism
The Checkers. To evaluate how real the generated datasets
were, we recruited three new participants (all undergraduates).
We provided them with two randomly selected dataset samples
of 1000 data points from each task, as well as the titles of
the dataset: Birth Records, Train Schedules from western
Europe, and Paediatric Age and Height Records. We asked
the participants to help us determine if these datasets could
be real or fake. We asked them to explain their conclusions
and, in plain English, write checks that we could use for other,
similar samples that they have not seen. We used the samples
to ground their reasoning as well as to eliminate simplistic
checks like ‘age should be a number’. We encouraged the
participants to use any data analysis tools to help them with
the process, but we provided the data in Excel spreadsheets.
We observed that users often created visualizations in Excel
to examine gender or country distributions. We recruited
external checkers that did not generate the dataset to eliminate
any biases introduced by working through the data generation
process.

6Mauchly’s test of sphericity indicated that the assumption of spheric-
ity was met.

We coded the responses to find common rules from the checks.
Each checker provided 3 to 5 checks per task. We eliminated
conflicting checks. For example, one checker wanted trains to
depart or arrive uniformly across all hours of the day; another
checker felt that trains should mostly depart during peak hours.
We eliminated checks that required external datasets that were
not available to the developers or users during data generation.
For example, two checkers wanted us to verify that travel times
were positively correlated with distance between cities.

Table 2 summarizes the final set of rules that we evaluated.
Using these rules as a metric for how real a dataset is, we
found that datasets generated with Synner usually fare better
than those generated by developers or with Mockaroo.

We now explore these results in the context of some of the
technical challenges and design principles discussed earlier.

Correctly implementing a statistical distribution. We observed
that developers were prone to make errors even with simple
statistical distributions. This impacted realism with respect
to rules 3 and 10. For example the following code snippet,
accidentally results in a 2:1 distribution of women to men:
The developer assumed that the random integer generator only
returns ‘-1’ or ‘1’ and did not consider ‘0’.

genderInd = random.randint(-1,1)
gender = "F"
if genderInd == 1:

gender = "M"

Instant visual feedback by providing a histogram of gender
would have helped the developer detect the problem.

Correctly implementing relationships. In Mockaroo, the or-
der of specifying fields usually determines the order of data
generation and users have to specify independent fields before
dependent ones7. These ordering rules, however, do not ap-
ply when generating data jointly from domains with natural
dependencies such as cities and countries. For rule 1, users
had to specify the parent’s last name first for the child’s last
name to depend on it. When expressing the relationship failed
because of incorrect ordering, eight users simply gave up and
generated the last name randomly. These ordering seman-
tics can have insidious effects: for example in Mockaroo’s
domain database, there are roughly 70 French cities and sev-
eral western European countries with only a handful of cities:
this resulted in an unusual distribution of countries in the TS
datasets generated with Mockaroo: France was in about 80%
of all the train trips. Reordering columns such that country
occurs before city does not impact the data generation order.
Synner does not require users to add fields in a specific order
to control dependencies and the semantics of dependencies
are consistent. The declarative, visual specification means
that users can clearly specify how fields depend on each other,
and Synner implements the correct data generation order that
matches the user specification. If users declared that city de-
pends on country (as all users did in Synner) then countries
were sampled uniformly and each generated country probed
the relationship join of cities and countries to generate a city.

7We thoroughly covered order semantics in Mockaroo’s tutorial

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

557

Task # Data is real if … Ev
al
ua

te
d
On

Sy
nn

er
M
oc

ka
ro
o

De
ve
lo
pe

rs
Fr
ee
la
nc

er
CS

Gr
ad

s

Birth Records

1 Most children have the same last name as one of their parents last names DS 0.78 0.56 0.80 1.00 0.60
2 Names are gender-typical C 0.89 0.91 0.87 0.93 0.80
3 The distribution of males and females is uniform DS 1.00 1.00 0.70 0.60 0.80
4 There are no unusually frequent name patterns DS 1.00 1.00 0.80 0.60 1.00

Train Schedules
5 Arrival time is at least 15 minutes after departure time R 0.81 0.68 0.69 0.77 0.62
6 There are no unusually frequent countries DS 1.00 0.00 0.80 0.80 0.80

Pediatric Age &
Height

7 On average, boys are taller than girls DS 0.83 0.61 0.90 1.00 0.80
8 For each age group, there is some height variance R 0.98 0.62 0.93 1.00 0.85
9 Age and Height follow the appropriate distributions for children* DS 1.00 0.67 0.90 1.00 0.80
10 The distribution of males and females is uniform DS 1.00 1.00 0.70 0.60 0.80
11 Age is less than or equal to 16 years old DS 1.00 1.00 0.90 0.80 1.00

Table 2. For each check, we report the proportion of datasets that satisfy the rule if the rule was evaluated on the entire data set (DS). For rules evaluated
on columns (C), we report the proportion of columns across all datasets that satisfy the rule. For example, there are three name columns per BR dataset
for which rule #2 applies. For rules evaluated on rows or row groups (R), (e.g. AH rows grouped by age), we report the proportion of rows or groups
that satisfy the rule. *Further clarifications on how rule 9 was implemented are detailed in the text.

The reverse dependency, country depends on city, would have
resulted in cities controlling the distribution of countries.

To evaluate whether age and height fit the CDC children’s
growth charts: we generated an ideal sample using the growth
charts. We then computed the Kullback-Leibler divergence,
which measures how one probability distribution is different
from another. Figure 10 illustrates the KL-divergence pre-
sented as the percentage increase in bits required to encode the
ideal sample’s distribution with a given sample’s distribution.
If we generated a sample of heights uniformly distributed be-
tween 80 and 200 cm, independent of age, we would require
an extra 15.6% bits to encode the ideal sample. Using this as
a weak threshold for how real the age and height samples are,
we present in Table 2 the proportion of samples that are better
than random. In Figure 10, the four Mockaroo samples that
were worse than a random sample achieved so by expressing
an incorrect linear relationship between age and height (height
= age × 40; age × 20; age × 10 or age × 2). As we mentioned
earlier, users often hit a cliff of complexity when trying to
express the relationship between age and height. Even when
users were able to express the relationship, they often had
difficulties adding some variance (rule 8) and ended up with
a specific height for a given age. We noticed that develop-
ers employed a variety of strategies to generate this dataset:
some created a look-up table of height ranges for each age
value — a height was selected uniformly at random from this
range, others created a straight line equation with a slope and
an intercept that they estimated from the growth charts. One
developer generated height randomly and independently of
age.

Specifying the relationship between age and height by drawing
it in Synner, and visually controlling the degree of Gaussian
noise with a slider, drastically simplified the process. We did
observe, however, that users overemphasized the tapering in
height that occurs around 15 years old, and tapered height
much earlier at around 10 or 11 years old. These results
resonate with recent research on how users (mis)sketch time-

0 100 200 300 400 500
Self-reported time to complete data generation tasks (minutes)

BR GR

FL

TS GR

FL

AH GR

FL

0 10 20 30 40 50 60
% of extra bits required to encode correct distribution

SY

MK

GR

FL Approximating by a random distribution (15.60%)

0 5 10 15 20
Time to complete data generation task (minutes)

BR SY

MK

TS SY

MK

AH SY

MK

Figure 10. For the Age & Height pediatric records data set, we com-
pute the KL-divergence of the generated sample from an ideal sample
derived from the CDC male and female growth charts (age groups 2-16).
From the KL-divergence, we determine the percentage increase in bits
required to approximate the ideal distribution by the generated sample’s
distribution. For reference, if the sample’s distribution is completely ran-
dom, then we can approximate the ideal distribution with a 15.6% in-
crease in bits. A sample perfectly represents the ideal sample if it needs
0% extra bits.

series patterns [23]. In the future we intend to annotate such
inflection points to allow users to realize such sketching errors
and correct them.

Qualitative Evaluations
We also administered a post-study questionnaire to gain some
qualitative feedback on Synner. On a 5-point Likert scale,
we asked users to rate each tool’s ease of use, expressiveness
or power, and realism of the generated data. Overall users
found both Synner and Mockaroo easy to use (µS Y = 4.2, ;
µMK = 4.1,). They found Synner to be more expressive
and more powerful when compared to Mockaroo, µS Y = 4.6,

; µMK = 3.6, , and also more capable of generating
realistic data, µS Y = 4.6, ; µMK = 3.9, .

We asked users to elaborate on their ratings. Many users com-
mented on the numerous domains available in Mockaroo and
wished that we expanded the available domains in Synner: “I
preferred that [Mockaroo] had a bigger menu range for choos-
ing different types of data”. A number of users commented
that for simple tasks, Mockaroo was lot more easy to use than
Synner but as the tasks became more complex, the reverse
was true: “[Mockaroo] is useful for very simple data and if

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

558

Formula describing field (click to preview or
edit); min and max are not enforced when a
field is described by a formula.

Preview produces a table of 1000 rows of generated data

Type refers to the domain of the field such as Number, Cities, Gender, etc., as well
as data distributions and formulae

One can specify a percentage of missing values.
Specification is
order sensitive:
age & sex must
precede height
as it depends
on both fields.

Figure 11. A possible specification of the pediatric age and height
records data set in Mockaroo.

the user doesn’t care much about details. However, it doesn’t
provide the user with lots of options to manipulate the data,”

“[Mockaroo] gets worse the more complicated and inter-related
the data is,” “[Mockaroo is] not really easy. I spent 11 min
trying to generate if-else functions and struggled with it,” “Re-
lationships happen behind the scenes [in Mockaroo] and if it
does not happen automatically then there is no way to define
relationships,” “It is very good at relating fields automatically,
but [Mockaroo] gives little freedom beyond that.”

Many users appreciated Synner’s example-driven interaction
features. One user noted that it contributed to the tool’s overall
ease of use: “The auto-suggestions and fills were very useful.”.
For each task, we counted the number of times users used
Synner’s example-driven interaction features: For the BR task,
users used these features an average of 7 times out of 8 possible
opportunities; For TS task, 5.2 out of 6; For the AH task, 4.3
out of 5.

Synner’s interactive visualizations of generated data, ability to
communicate randomness and expressive power might have
increased user trust in the overall realism of the generated
datasets: “I think most of the data was realistic and it was easy
[in Synner] to make adjustments too if something didn’t seem
right;” “In the examples I did, the data generated was pretty
realistic: [Synner] allows you to visually represent it so you
can get more accurate results;” “ you can make sure that each
field is consistent with the others; especially with the ability
to control distributions and correlations at such a granular
level.” This contrasted with some of the users’ comments on
their experiences using Mockaroo: “Less control over data
generated and quality of data produced was questionable ...
clicking preview each time was a hassle and it wasn’t clear
whether a [relationship] existed or not,” “I had to manually
count numbers as I changed data parameters,” “You couldn’t
see the preview until the end, you didn’t have any idea what
the output would be until then”, “It was difficult because you
couldn’t be sure whether you had done something correctly
without clicking on the preview button.”

RELATED WORK
We first describe Mockaroo, a commercial, and user-friendly
tool for realistic data generation, that requires no program-
ming [2]. Figure 11 illustrates how one can generate the pedi-
atric age and height records with Mockaroo. A simple form-
based interface and an extensive library of domains allows
users to quickly generate realistic data with straightforward

relationships. Mockaroo provides some support for custom
distributions over discrete values with basic support for case
dependencies8. This feature does not extend to continuous
distributions. The following interface design limitations of
Mockaroo make the specification of complex data generation
tasks difficult: (i) Mockaroo is order-sensitive, which means
its specification interface is not entirely declarative. In Figure
11, height has to occur after age and sex to allow height to
depend on both. When a user’s specification order is different
from the partial order imposed by dependencies, debugging
the source of the data generation errors can be frustrating.
Missing values can also cause cascading errors. In Figure 11,
a missing age value results in an error message to be generated
for the corresponding height. (ii) Mockaroo lacks any form
of visual specification support. Thus users have to know a
priori the exact statistical distributions for their data and how
independently distributed fields affect dependents. (iii) Mocka-
roo provides no interactive, visual previews. This makes it
difficult for users to validate the correctness or realism of
their specifications, or to easily refine the parameters of their
distributions.

Our work stands apart from synthetic data generators for test-
ing code [9]. It is more closely related to synthetic data gener-
ation for database benchmarking or SQL testing [26, 28, 15, 5,
29, 11]. There are several points of departure, however, from
this body of work.

First, Synner does not assume access to a real dataset (or a
real database schema and meta-data which contains table his-
tograms and join selectivity stats) from which we can estimate
a multidimensional (statistical) model that allows us to gener-
ate datasets of any scale like the following systems: [26, 28,
15]. Like Synner, these works do strive for data realism: they
infer as accurately as possible the data distributions of the pro-
vided sample dataset. Unlike, Synner, they do not help users
build datasets from scratch and, in a tight human-in-the-loop
fashion, specify and visually validate their specifications.

Second, Synner’s underlying data generation language dif-
fers from other data generation languages: It is declarative
unlike these works: [11, 5]. It is also deliberately not as com-
plex: when testing SQL queries or features of a database
management system like a new index structure, one needs to
create datasets that meet exact cardinality or aggregation con-
straints [29, 6] such as the size of the result set for a specific
query needs to be bigger than x or smaller than the result set
of another query, or that the average of a set of tuples should
be more than the average of another (overlapping) set of tu-
ples. While Synner’s language allows us to generate datasets
where men on average are taller than women, the language
does not enforce such a guarantee (there is a small statistical
chance that we end up with a generated dataset with no dif-
ference in means) and this is communicated visually. More
importantly, Synner allows users to specify different distri-
butions for men and women to achieve this property rather
than specify the property on averages and utilize solvers or
other heuristics to automatically infer a valid distribution for
each group [29]. Thus, Synner’s language sits at a different

8https://mockaroo.com/help/list

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

559

https://mockaroo.com/help/list

point in the power-usability tradeoff from these data genera-
tion languages: we deliver more expressive power than tools
like Mockaroo but are more user-friendly than these data gen-
eration scripting languages. Like many of these languages, we
require that dependencies form a DAG to ensure tractable data
generation [29].

In Synner, relationships between fields form a DAG of depen-
dencies. When these dependencies are conditional probability
distributions, such as when the mean of a normal distribution
for height depends on sex, then the data generation model
is effectively a Bayesian model. Tools like JAGS (Just An-
other Gibbs Sampler) [25] and the different variants of BUGS
(Bayesian inference Using Gibbs Sampling) [22] support the
simulation of data from a Bayesian model, which can be spec-
ified either through code or visually through a graph. The
primary purpose, however, of these tools is to infer the param-
eters of prior distributions given input data. Simulation experts
who would like to test the validity of a hypothesized model for
a given data set often use these tools. Synner does not support
inference. It, however, enables realistic data generation by a
much larger user base than simulation experts by (i) allowing
users to iteratively and interactively specify data generation
tasks with little statistical or Bayesian modelling expertise,
(ii) by providing richer domains and support for domain re-
lationships, and (iii) by allowing visual and example-driven
specifications of fields.

Synner’s design principles of visual lifting, declarative spec-
ification, and example-driven interaction were influenced by
Heer et al.’s work on predictive interaction for data transforma-
tion [13] and Horvitz’s design principles for Mixed-initiative
user-interfaces [14].

Our strategies for communicating uncertainty in the outcomes
of a data generation process are influenced by the rich literature
on uncertainty visualization [16]. Like Hullman’s hypothetical
outcome plots, our Layers visualization generates multiple
outcomes of the generation process and visualizes them [17].
Synner has the added challenge of integrating the visual spec-
ification of the data distribution along with the uncertainty
associated with the data generation process.

CONCLUSION
In this paper, we described the technical challenges of gen-
erating realistic data, and the design principles of a powerful
and expressive, yet easy to use data generation tool. We built
Synner following these principles and conducted user studies
to evaluate how effective Synner is at generating data and how
realistic datasets generated with Synner are. We find that on
average users spend less time specifying more complex data
generation tasks with Synner than with Mockaroo: a popular
and publicly accessible data generation tool. We also find than
on user-provided checks of data realism, datasets generated
with Synner satisfy more checks than datasets generated by
developers or with Mockaroo.

Currently, Synner’s visual interface can easily handle datasets
with thousands of records: interactivity degrades, however,
beyond that. While the downloaded data generation script
can produce orders of magnitude more data when executed

in Synner’s command-line, interactivity and uncertainty vi-
sualization at massive data scale is a limitation we intend to
address in the future, perhaps with visualization-aware sam-
pling techniques [20, 24]. While this limitation may not
impact pedagogical and software-demo use cases, it limits our
ability to visually understand (and hence visually specify) the
behavior of different data distributions and relationships at
massive scale.

Finally, we chose the name Synner as a portmanteau for
‘Synthetic data generator’ but also as it is a homophone for
sinner. We are aware of the implications of making realistic
data generation easy and we are looking for ways to prevent
misuse. We believe that our tool will benefit many users in-
cluding members of the UIST community who may wish to
create compelling demonstrations, or interesting datasets for
class projects. At the moment, we have weak safeguards in
place such as purely statistical data generation, which means
that the same script is unlikely to yield the same dataset; and
what you see in the spreadsheet is not what you download. We
will also open-source the project.

REFERENCES
[1] 2018. Gallup World Poll. (2018). https:
//www.gallup.com/analytics/232838/world-poll.aspx

[2] 2019. Mockaroo: Random Data Generator.
https://www.mockaroo.com/. (2019).

[3] Jad Abumrad and Robert Krulwich. 2009. A Very Lucky
Wind. Podcast produced by WNYC Studios. (June
2009). https:
//www.wnycstudios.org/story/91686-a-very-lucky-wind

[4] Ken Brodlie, Rodolfo Allendes, Osorio, and Adriano
Lopes. 2012. A Review of Uncertainty in Data
Visualization. Springer London, London, 81–109. DOI:
http://dx.doi.org/10.1007/978-1-4471-2804-5_6

[5] Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible
Database Generators. In Proceedings of the 31st
International Conference on Very Large Data Bases
(VLDB ’05). VLDB Endowment, 1097–1107.
http://dl.acm.org/citation.cfm?id=1083592.1083719

[6] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas.
2006. Generating Queries with Cardinality Constraints
for DBMS Testing. IEEE Trans. on Knowl. and Data
Eng. 18, 12 (Dec. 2006), 1721–1725. DOI:
http://dx.doi.org/10.1109/TKDE.2006.190

[7] Hadley Cantril. 1966. The pattern of human concern.
Rutgers University Press.

[8] GAISE College Report ASA Revision Committee. 2016.
Guidelines for Assessment and Instruction in Statistics
Education College Report 2016. (2016).
http://www.amstat.org/education/gaise

[9] Jon Edvardsson. 1999. A survey on automatic test data
generation. In Proceedings of the 2nd Conference on
Computer Science and Engineering. 21–28.

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

560

https://www.gallup.com/analytics/232838/world-poll.aspx
https://www.gallup.com/analytics/232838/world-poll.aspx
https://www.mockaroo.com/
https://www.wnycstudios.org/story/91686-a-very-lucky-wind
https://www.wnycstudios.org/story/91686-a-very-lucky-wind
http://dx.doi.org/10.1007/978-1-4471-2804-5_6
http://dl.acm.org/citation.cfm?id=1083592.1083719
http://dx.doi.org/10.1109/TKDE.2006.190
http://www.amstat.org/education/gaise

[10] FiveThirtyEight. 2019. Data and code behind the articles
and graphics at FiveThirtyEight. (2019).
https://data.fivethirtyeight.com/

[11] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken
Baclawski, and Peter J. Weinberger. 1994. Quickly
Generating Billion-record Synthetic Databases. In
Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’94).
ACM, New York, NY, USA, 243–252. DOI:
http://dx.doi.org/10.1145/191839.191886

[12] Rui Han, Zhen Jia, Wanling Gao, Xinhui Tian, and Lei
Wang. 2015. Benchmarking Big Data Systems:
State-of-the-Art and Future Directions. CoRR
abs/1506.01494 (2015). http://arxiv.org/abs/1506.01494

[13] Jeffrey Heer, Joseph Hellerstein, and Sean Kandel. 2015.
Predictive Interaction for Data Transformation. In
Conference on Innovative Data Systems Research
(CIDR). http:
//idl.cs.washington.edu/papers/predictive-interaction

[14] Eric Horvitz. 1999. Principles of Mixed-initiative User
Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM,
New York, NY, USA, 159–166. DOI:
http://dx.doi.org/10.1145/302979.303030

[15] Kenneth Houkjaer, Kristian Torp, and Rico Wind. 2006.
Simple and Realistic Data Generation. In Proceedings of
the 32Nd International Conference on Very Large Data
Bases (VLDB ’06). VLDB Endowment, 1243–1246.
http://dl.acm.org/citation.cfm?id=1182635.1164254

[16] J. Hullman, X. Qiao, M. Correll, A. Kale, and M. Kay.
2019. In Pursuit of Error: A Survey of Uncertainty
Visualization Evaluation. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (Jan 2019),
903–913. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2864889

[17] Jessica Hullman, Paul Resnick, and Eytan Adar. 2015.
Hypothetical Outcome Plots Outperform Error Bars and
Violin Plots for Inferences About Reliability of Variable
Ordering. PLOS ONE 10, 11 (2015).
http://idl.cs.washington.edu/papers/hops

[18] Andrew T Jebb, Louis Tay, Ed Diener, and Shigehiro
Oishi. 2018. Happiness, income satiation and turning
points around the world. Nature Human Behaviour 2
(2018), 33–38. Issue 1. DOI:
http://dx.doi.org/10.1038/s41562-017-0277-0

[19] Matthew Kay, Tara Kola, Jessica R. Hullman, and
Sean A. Munson. 2016. When (Ish) is My Bus?:
User-centered Visualizations of Uncertainty in Everyday,
Mobile Predictive Systems. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
5092–5103. DOI:
http://dx.doi.org/10.1145/2858036.2858558

[20] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr
Indyk, Sam Madden, and Ronitt Rubinfeld. 2015. Rapid

Sampling for Visualizations with Ordering Guarantees.
Proc. VLDB Endow. 8, 5 (Jan. 2015), 521–532. DOI:
http://dx.doi.org/10.14778/2735479.2735485

[21] Albert Kim, Chester Y.Ismay, and Jennifer Chunn. 2018.
The fivethirtyeight R Package: "Tame Data" Principles
for Introductory Statistics and Data Science Courses .
Technology Innovations in Statistics Education 11
(2018). Issue 1.
https://escholarship.org/uc/item/0rx1231m

[22] David J. Lunn, Andrew Thomas, Nicky Best, and David
Spiegelhalter. 2000. WinBUGS — A Bayesian
Modelling Framework: Concepts, Structure, and
Extensibility. Statistics and Computing 10, 4 (Oct.
2000), 325–337. DOI:
http://dx.doi.org/10.1023/A:1008929526011

[23] Miro Mannino and Azza Abouzied. 2018. Expressive
Time Series Querying with Hand-Drawn Scale-Free
Sketches. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, Article 388, 13 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173962

[24] Y. Park, M. Cafarella, and B. Mozafari. 2016.
Visualization-aware sampling for very large databases.
In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). 755–766. DOI:
http://dx.doi.org/10.1109/ICDE.2016.7498287

[25] Martyn Plummer and others. 2003. JAGS: A program
for analysis of Bayesian graphical models using Gibbs
sampling. In Proceedings of the 3rd international
workshop on distributed statistical computing, Vol. 124.
Vienna, Austria., 10.

[26] Tilmann Rabl, Manuel Danisch, Michael Frank,
Sebastian Schindler, and Hans-Arno Jacobsen. 2015.
Just Can’T Get Enough: Synthesizing Big Data. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15).
ACM, New York, NY, USA, 1457–1462. DOI:
http://dx.doi.org/10.1145/2723372.2735378

[27] Dan Rinzel. 2016. Staging to Sell: the seduction &
danger of demo data. (2016).
https://medium.com/@dan2bit/staging-to-sell-the-

seduction-danger-of-demo-data-9a229981d32 Last
Accessed on March 29, 2019.

[28] Entong Shen and Lyublena Antova. 2013. Reversing
Statistics for Scalable Test Databases Generation. In
Proceedings of the Sixth International Workshop on
Testing Database Systems (DBTest ’13). ACM, New
York, NY, USA, Article 7, 6 pages. DOI:
http://dx.doi.org/10.1145/2479440.2479445

[29] Emina Torlak. 2012. Scalable Test Data Generation from
Multidimensional Models. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (FSE ’12). ACM,
New York, NY, USA, Article 36, 11 pages. DOI:
http://dx.doi.org/10.1145/2393596.2393637

Session 5A: Statistics and Interactive Machine Learning

UIST '19, October 20–23, 2019, New Orleans, LA, USA

561

https://data.fivethirtyeight.com/
http://dx.doi.org/10.1145/191839.191886
http://arxiv.org/abs/1506.01494
http://idl.cs.washington.edu/papers/predictive-interaction
http://idl.cs.washington.edu/papers/predictive-interaction
http://dx.doi.org/10.1145/302979.303030
http://dl.acm.org/citation.cfm?id=1182635.1164254
http://dx.doi.org/10.1109/TVCG.2018.2864889
http://idl.cs.washington.edu/papers/hops
http://dx.doi.org/10.1038/s41562-017-0277-0
http://dx.doi.org/10.1145/2858036.2858558
http://dx.doi.org/10.14778/2735479.2735485
https://escholarship.org/uc/item/0rx1231m
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.1145/3173574.3173962
http://dx.doi.org/10.1109/ICDE.2016.7498287
http://dx.doi.org/10.1145/2723372.2735378
https://medium.com/@dan2bit/staging-to-sell-the-seduction-danger-of-demo-data-9a229981d32
https://medium.com/@dan2bit/staging-to-sell-the-seduction-danger-of-demo-data-9a229981d32
http://dx.doi.org/10.1145/2479440.2479445
http://dx.doi.org/10.1145/2393596.2393637

	Introduction
	Motivating Use Cases
	Assumptions about Target Users
	The Technical Challenges of Generating `Real' Data with Existing Methods
	Synner's Design Principles

	Generating Data with Synner
	Evaluation
	Comparative User-Study Results

	Related Work
	Conclusion
	References

