
Synner: Generating Realistic Synthetic Data
Miro Mannino
NYU Abu Dhabi

miro.mannino@nyu.edu

Azza Abouzied
NYU Abu Dhabi
azza@nyu.edu

ABSTRACT
Synner allows users to generate realistic-looking data. With
Synner users can visually and declaratively specify prop-
erties of the dataset they wish to generate. Such properties
include the domain, and statistical distribution of each field,
and relationships between fields. User can also sketch cus-
tom distributions and relationships. Synner provides instant
feedback on every user interaction by visualizing a preview
of the generated data. It also suggests generation specifica-
tions from a few user-provided examples of data to generate,
column labels and other user interactions. In this demonstra-
tion, we showcase Synner and summarize results from our
evaluation of Synner’s effectiveness at generating realistic-
looking data.

CCS CONCEPTS
• Human-centered computing → Interactive systems
and tools.
KEYWORDS
data generation, declarative languages, example-driven in-
teraction
ACM Reference Format:
Miro Mannino and Azza Abouzied. 2020. Synner: Generating Re-
alistic Synthetic Data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3318464.3384696

1 INTRODUCTION
For many users from data scientists, to educators, to software
testers, data generation is important. Often real datasets are
(a) inaccessible such as private medical or financial records,
(b) expensive such as twitter’s data stream, (c) too coarse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384696

grained such as energy consumption records aggregated by
district instead of by household, or (d) incomplete e.g. the
data is missing important fields, or is a small subset of the
entire dataset. In these situations, we resort to synthetic data
as a functional alternative to real data.

However, generating realistic synthetic data is technically
challenging, especially since only a handful of tools support
basic data generation through a user-friendly UI (e.g.Mocka-
roo [1]) . As we empirically demonstrate in our full paper
describing Synner [4], experienced developers can spend
hours writing a data generation script for a relatively small
data set, on the order of ten fields, and still produce data
sets that are not real enough. There are several reasons why
data generation is a technically complex task: First, generat-
ing realistic data requires a fair understanding of statistical
modeling and developers often have to correctly transform
standard distributions to custom ones or identify appropriate
parameters for distributions through trail and error. Second,
dependencies or relationships between fields often introduce
ordering constraints on how we generate data and if these
are not implemented correctly, data generation can become
computationally intractable or produce unreal data. Finally,
scaling down a dataset can result in the biased sampling of
domains and scaling up a dataset can result in unintended
repetitions or poor performance.
For many users who view data generation as secondary

albeit essential to their primary task, investing the time and
resources to generate the right data is often unjustifiable. To
address these challenges, we designed and built Synnerwith
the following principles:
Visual Lifting: Synner generates data from scripts in a
custom declarative data generation language (See Listing 1).
Synner visually lifts from these scripts to a more intuitive vi-
sual domain (See Figure 1). It generates, samples and presents
data at every user interaction in a familiar spreadsheet visu-
alization.

The interface guides users on how to add fields, dependen-
cies and even what distributions to use or which domains
to pick data from. Users can even draw custom univariate
distributions or bivariate relationships.
Declarative Specification. Users only focus on what the
data looks like but not how it is generated: they do not specify
the order of generating data fields, or when to optimally
apply selection operations (e.g. when wishing to select only
a subset of the generated data), or how to sample from a

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2749

https://doi.org/10.1145/3318464.3384696
https://doi.org/10.1145/3318464.3384696
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3384696&domain=pdf&date_stamp=2020-05-31

SIGMOD’20, June 14–19, 2020, Portland, OR, USA M. Mannino and A. Abouzied

In the preview, spreadsheet, pane, users
can add columns, change data types, add
filters, hide columns as well as add
dependencies. Clicking on ‘Depends on’
produces a menu of existing and new
domain columns on which this column
can depend on.

Synner provides a preview
of the generated data in the
spreadsheet cells, a
histogram for each column
as well as a few statistics.
Users can directly enter a
few values to refine Synner’s
data generation suggestions.

Users can directly enter a
few values to refine Synner’s
data generation suggestions.

Users can download data in a
variety of formats or download a
script for offline execution using
Synner's command line tool.

In the detailed
specification pane, users
can specify and modify
statistical distribution,
domains and visual
relationships as well as
view and select Synner’s
data generation
suggestions.

All visual specifications illustrate multiple
generation outcomes to communicate
the inherent randomness of probabilistic
data generation.

Users can define filters
to remove unwanted
values from the output.

Users can specify different data
properties for each dependency
case: e.g. a different distribution
of Income depending on the
Region.

Figure 1: Synner’s user interface

statistical distribution, or how to jointly generate values
from related domains such as city and country.
Example-driven Interaction. Synner infers what users
wish to generate from column labels or values manually
inserted into the data spreadsheet. It suggests an ordered list
of the top five generator recommendations. It also suggests
dependencies or relationships between domains.

2 DEMONSTRATION
At SIGMOD 2020, we will demonstrate Synner’s ability
to effectively generate synthetic data. Attendees can use
Synner to design their own synthetic data sets through
two laptops pre-loaded with Synner or by accessing our
online demo at synner.io. We will guide attendees through
the main interface features of Synner as well as describe
Synner’s underlying data generation engine and its many
optimizations, which would be of interest to the data
management community. While attendees can make their
own datasets, we will showcase Synner through a guided
use-case scenario.

Guided Demo Scenario: The Economics Professor. Mar-
cia is an Economics professor who teaches at a small col-
lege in Latin America. She generates a dataset to allow her
first-year quantitative methods students to analyze the re-
lationship between happiness and income across Northern
America, and Latin America & the Caribbean. She bases her
generated dataset on the results of a recent study that ex-
plores income and happiness across the world [3] and uses
the GallupWorld Poll dataset, which is not publicly available.
She wishes to generate roughly 10,000 data points. She hopes
her students would analyze and visualize the dataset, which

Region

Country

Income
if (Region == NA) ~N(50000, 40000)
else ~N(10000, 8000)

10000 40000 1600006

8

Income

M
ea
n
LE

LA

NALife Evaluation
Uniform Distribution {NA, LA}

Domain
Dependency

Case
Dependency

Case
Dependency

Visual
Relationship

Figure 2: The properties of Marcia’s desired synthetic
dataset.

she explains illustrates the relationship between income and
happiness and differences across regions of varying wealth.
She sketches the data schema in Figure 2.

Figure 1 illustrates the different features of Synner and the
final preview after Marcia generates her entire dataset, with
the focus on the Income column. To generate her data, Mar-
cia simply begins by adding a new column. As soon as she
labels it Country, Synner suggests using a Country domain
generator in the details pane. On selecting that generator, the
preview column is populated with a few randomly selected
countries. A histogram at the top of the column shows the
distribution of different countries. She wishes Country to
depend on Region so she clicks depends on, which causes
Synner to present a drop-down menu of fields to select or
even create that Country can depend on. Using a backend
domain database that contains data of known domains such
as City, Name, Continent, Region, Zipcodes, etc. and pair-
wise relationships between related fields, Synner suggests
new fields such as City, Region, Zipcodes, etc., that can be
related with Country through a minimal join path of rela-
tionship tables. Marcia selects Region, which creates a new
column labeled Region with values randomly selected from
the Region domain. Now each row shows a country within

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2750

synner.io

Synner: Generating Realistic Synthetic Data SIGMOD’20, June 14–19, 2020, Portland, OR, USA

Figure 3: Visual relationship between Income and Life
Evaluation when Region is Northern America.
the given region. Marcia can now filter values in the Region
to only those in ‘Northern America’ and ‘Latin America and
the Caribbean’.

She then creates the Income field and types in a few values
into the column. Synner suggests several statistical distri-
butions that fit the examples given. She selects a normal dis-
tribution and sets the mean to 10000 USD and the standard
deviation to 8000 USD, which roughly matches the statistics
on income in Latin America in her reference study [3]. Since
she wants a different income distribution for North America,
she adds Region as a dependency, which allows her to “Add a
New Case” (See Figure 1). She then creates a different normal
income distribution for rows where Region == ’Northern
America’: mean income of 50000 USD and standard deviation
of 40000.
Finally, she creates the Life Evaluation field. Life Evalua-

tion is a self-reported 0-10 score on Cantril’s Self-Anchoring
Striving Scale [2]. Using the plot of life evaluation against
income byworld regions from the study (Figure 2), Marcia de-
clares that Life Evaluation depends on Income and specifies
two visual relationships between income and life evaluation,
one for the Northern America region (Figure 3) and one for
Latin America & the Caribbean. She also controls how much
noise is added to the relationship.

Through this small but realistic scenario, we demonstrate
most of Synner’s features and design principles, which are
discussed in detail in the full paper [4]. We can easily add
more fields with different properties and relationships to
illustrate and clarify Synner’s data generation power as
well as demonstrate features not in described in this paper
for brevity such as Synner’s ability to introduce errors and
missing values, and Synner’s data visualizations that aim to
communicate the randomness of probabilistic data genera-
tion [4].

2.1 The Data Generation Engine
Every user interaction that changes the properties of the
data set automatically updates a declarative data generation
script. The script describes the properties of each field such
as its domain, its statistical distribution, and its relationships

1{ "model": {
"Country": {

3"type": "string",
"dependencies": ["Region"],

5"generator": {"domain": "COUNTRY"}},
"Region": {

7"type": "string",
"filter": "Region == 'Northern America ' ||

9Region == 'Latin America '",
"generator": {"domain": "REGION"}},

11"Income": {
"type": "integer",

13"dependencies": ["Region"],
"generator": {

15"switch": [{
"case": "Region == 'Northern America '",

17"then": {
"distribution": "normal",

19"mean": 50000, "stdev": 40000}},{
"default": {

21"distribution": "normal",
"mean": 10000, "stdev": 8000}}]}},

23"Life_Evaluation": {
"type": "integer",

25"dependencies": ["Income", "Region"],
"generator": {

27"switch": [{
"case": "Region == 'Northern America '",

29"then": {
"visrel": {

31"x-field": "Income",
"x-sketch -normalized": [0, ..., 1],

33"y-sketch -normalized": [0, ..., 0.994],
"x-min": 0, "x-max": 160000,

35"y-min": 6, "y-max": 8,
"noise": 0.0552}}},{

37"default": {...}}]}}},
"data": {

39"size": 10000, ...
}}

Listing 1: The Data Generation Script for Marcia’s
dataset
to other fields, as well as overall properties of the data to be
generated (e.g. the dataset size). Hand-sketched custom dis-
tributions or visual relationships are encoded as normalized
points on a two-dimensional unit square (See Listing 1, lines
33-36).
The engine parses the script to create an optimal, exe-

cutable, data generation pipeline, which it executes. The en-
gine returns a sample of the data to the front-end user in-
terface for preview as well as different summary statistics,
but stores the entire generated dataset. This can later be
downloaded in different formats.

2.1.1 Parser. The parser translates the data generation
script to a directed acyclic graph (DAG). For each field a
node is created, with directed edges representing relation-
ships such as domain dependencies, case dependencies or
visual relationships between fields. For example, Figure 2 il-
lustrates the DAG the parser produces from Marcia’s dataset
specification. Since the DAG determines the data generation
order, no cycles are allowed.

2.1.2 Planner & Optimizer. The planner topologically sorts
the nodes of the DAG to produce a data generation order.

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2751

SIGMOD’20, June 14–19, 2020, Portland, OR, USA M. Mannino and A. Abouzied

The script in listing 1 results in the following data generation
order: [1: {Region}, 2: {Country, Income}, 3: {Life Evaluation}].
Synner always pushes down selection operations, i.e. it

applies them at the field with the filter condition, immedi-
ately after its value is generated, and not post-hoc after the
entire data set is generated. The optimizer can choose to
apply field-level selection operations to the plan as follows:
(1) Block until valid. If the generated value violates the se-
lection condition, a new value is repeatedly generated until
one satisfies the condition,
(2) Start fresh. If the generated value violates the selection
condition, the entire tuple is deleted, or
(3) Further push-down. If the field depends on other base
fields, the optimizer attempts to create new selection opera-
tions for these base fields.
The optimizer opts for Start fresh or Further push-down if
the filtered field depends on other base fields in such a way
that a value cannot be generated that satisfies the selection
condition given the values of the base fields.

2.1.3 Scheduler. Given the data generation plan, the sched-
uler executes a sequence of generators in order of the plan.
Each generator looks up values that it depends on from
a global dataset table, generates its value, and updates (or
deletes) the appropriate row in the table. Synner supports
the following generators (and compositions of them):
(1) Statistical generators, which sample from many stan-
dard, parameterizable, distributions such as normal, uniform,
gamma, exponential, etc as well as custom distributions.
(2) Expression generators, which allow arbitrary expressions
over fields and string regular expressions.
(3) Enumeration generators, which sample from a user-
provided list of values with different frequencies.
(4) Domain generators, which sample from domains stored
in the domain database. Currently Synner supports a few
domains, which we hope to expand in the future.
(5) Sequence generators, which generate deterministic se-
quences of values e.g. 1, 2, 3, ... or 10:00, 10:15, ... etc.
(6) Case generators, which switch between different genera-
tors depending on which case, defined by a predicate on one
or more previously generated fields, is satisfied. A default
case generator must always be defined.
(7) Visual-Relationship generators, which define a visual rela-
tionship between a pair of fields (e.g Figure 3). Visual rela-
tionships can also be configured with some Gaussian noise.
(8) Domain-Dependency generators, which sample data from
one or more joined relationship tables in the domain data-
base. Synner searches for the minimal join path between
two domain-dependent fields that have no direct relation-
ship table. For example, in our domain database, there is
no relationship table between City and Region, but the

database contains these two relationship tables Relation-
ship.City_Country and Relationship.Country_Region. In
order to generate values for City that depend on Region
Synner samples from the join of the two tables: Relation-
ship.City_Country ▷◁ Relationship.Country_Region.
In the demonstration, we will also discuss our experiences
with several experimental optimizations including (a) effi-
cient statistical data generation by pre-computing and mate-
rializing columns of random values (b) utilizing column-store
layouts for efficient incremental data generation, (c) efficient
join materialization and sampling techniques, and (d) differ-
ent distributed processing techniques.

2.2 Evaluation Summary
We conclude our demonstration by describing the two main
takeaways from our evaluation of Synner’s user interface [4]:
First, users complete more complex tasks in significantly
less time with Synner than with Mockaroo— a popular,
easy-to-use data generation tool. Second, users generated
more realistic data sets with Synner than with alternatives
(including custom scripts written by hired developers) as
judged by an external group of realism checkers. Details of
the different experiments and our analysis can be found in
the main publication [4].

3 CONCLUSION
Our goal in this demonstration is to illustrate how an in-
teractive, example-driven interface that visually lifts from
a declarative data generation language and is backed by a
modular data generation engine can help users easily and
effectively generate rich and realistic synthetic data sets. In
our demonstration, attendees can experience for themselves
the power of Synner’s design. We also describe our on-going
efforts to improve the functionality and scalability of Syn-
ner’s data generation system through expanding the library
of generators, the domain database and our existing and ex-
perimental implementations of a variety of optimizations
such as selection push-down, efficient join sampling, etc.

REFERENCES
[1] 2019. Mockaroo: Random Data Generator. https://www.mockaroo.

com/.
[2] Hadley Cantril. 1966. The pattern of human concern. Rutgers University

Press.
[3] Andrew T Jebb, Louis Tay, Ed Diener, and Shigehiro Oishi. 2018. Happi-

ness, income satiation and turning points around the world. Nature Hu-
man Behaviour 2 (2018), 33–38. Issue 1. https://doi.org/10.1038/s41562-
017-0277-0

[4] Miro Mannino and Azza Abouzied. 2019. Is This Real? Generating
Synthetic Data That Looks Real. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST ’19). Association for Computing Machinery, New York,
NY, USA, 549–561. https://doi.org/10.1145/3332165.3347866

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2752

https://www.mockaroo.com/
https://www.mockaroo.com/
https://doi.org/10.1038/s41562-017-0277-0
https://doi.org/10.1038/s41562-017-0277-0
https://doi.org/10.1145/3332165.3347866

	Abstract
	1 Introduction
	2 Demonstration
	2.1 The Data Generation Engine
	2.2 Evaluation Summary

	3 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 12
 Mask co-ordinates: Horizontal, vertical offset 42.98, 722.71 Width 527.12 Height 19.30 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 12

 CurrentAVDoc

 42.9767 722.711 527.1227 19.2957

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 3

 1

 HistoryList_V1
 qi2base

