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Abstract
Constrained optimization problems are at the heart of 
significant applications in a broad range of domains, includ-
ing finance, transportation, manufacturing, and healthcare. 
Modeling and solving these problems has relied on applica-
tion-specific solutions, which are often complex, error-
prone, and do not generalize. Our goal is to create a 
domain-independent, declarative approach, supported and 
powered by the system where the data relevant to these 
problems typically resides: the database. We present a com-
plete system that supports package queries, a new query 
model that extends traditional database queries to handle 
complex constraints and preferences over answer sets, 
allowing the declarative specification and efficient evalua-
tion of a significant class of constrained optimization prob-
lems—integer linear programs (ILP)—within a database.

1. INTRODUCTION
Traditional database queries follow a simple model: they 
define constraints, in the form of selection predicates, that 
each tuple in the result must satisfy. This model is computa-
tionally efficient, as the database system can evaluate each 
tuple individually to determine whether it satisfies the query 
conditions. However, many practical, real-world problems 
require a collection of result tuples to satisfy constraints col-
lectively, rather than individually.

Example 1 (Meal planner). A dietitian needs to design a 
daily meal plan for a patient. She wants a set of three gluten-
free meals, between 2000 and 2500 calories in total, and with a 
low total intake of saturated fats.

Similar scenarios, requiring complex, high-order con-
straints arise frequently, and in many practical settings. 
A broad set of domains have applications that boil down to 
modeling and solving constrained optimization problems, 
for example, coordinating fleet and crew assignments in air-
line scheduling to reduce delays and costs,19 managing 
delinquent consumer credit to minimize losses,14 optimizing 
organ transplant allocation and acceptance,1 and planning 
of cancer radiotherapy treatments.20, 21 A significant class of 
constrained optimization problems are integer linear pro-
grams (ILP). ILP solutions alone account for billions in US 
dollars of projected benefits within each of these and other 
industry sectors.7

Modeling and solving these problems has relied on 
application-specific solutions,2, 9, 13, 17, 23, 18 which can often 
be complex and error-prone, and fail to generalize. Our goal 
is to create a domain-independent, declarative approach, 
supported and powered by the system where the data 
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relevant to these problems typically resides: the database. 
We present a complete system that supports package que-
ries, a new query model that extends traditional database 
queries to handle complex constraints and preferences 
over answer sets, allowing the declarative specification and 
efficient evaluation of a significant class of constrained 
optimization problems—ILP—within a database. Package 
queries are defined over traditional relations, but return 
packages. A package is a collection of tuples that (a) individ-
ually satisfy base predicates (traditional selection predi-
cates), and (b) collectively satisfy global predicates 
(package-specific predicates). Package queries are combi-
natorial in nature: the result of a package query is a (poten-
tially infinite) set of packages, and an objective criterion can 
define a preference ranking among them.

Extending traditional database functionality to provide 
support for packages, rather than supporting packages at 
the application level, is justified by two reasons: First, the 
features of packages and the algorithms for constructing 
them are not unique to each application; therefore, the bur-
den of package support should be lifted off application 
developers, and database systems should support package 
queries like traditional queries. Second, the data used to 
construct packages typically reside in a database system, 
and packages themselves are structured data objects that 
should naturally be stored in and manipulated by a data-
base system.

Our work addresses three important challenges. The first 
challenge is to support declarative specification of packages. 
SQL enables the declarative specification of properties that 
result tuples should satisfy. In Example 1, it is easy to specify 
the exclusion of meals with gluten using a regular selection 
predicate in SQL. However, it is difficult to specify global con-
straints (e.g., total calories of a set of meals should be between 
2000 and 2500 calories). Expressing such a query in SQL 
requires either complex self-joins that explode the size of the 
query, or recursion, which results in extremely complex que-
ries that are hard to specify and optimize. Our goal is to main-
tain the declarative power of SQL, while extending its 
expressiveness to allow for the easy specification of packages.

The second challenge relates to the evaluation of pack-
age queries. Due to their combinatorial complexity, pack-
age queries are harder to evaluate than traditional 
database queries.10 Package queries are in fact as hard as 
ILP.5 Existing database technology is ineffective at 
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order of magnitude faster than the ILP solver used directly 
on the entire problem; (2) scales up to sizes that the solver 
cannot manage directly; (3) produces packages of very good 
quality in terms of objective value.

2. LANGUAGE SUPPORT FOR PACKAGES
Database systems do not natively support package queries. 
While there are ways to express package queries in SQL, 
these are cumbersome and inefficient.

Specifying packages with self-joins. In the limited case of 
packages with strict cardinality, that is, a fixed number of 
tuples, it is possible to express package queries using rela-
tional self-joins. The query of Example 1 requires three 
meals (a package with cardinality three) and can be 
expressed as a three-way self-join:

SELECT *  FROM Recipes R1, Recipes R2, Recipes R3

WHERE       R1.pk < R2.pk AND R2.pk < R3.pk AND

 � R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND R3.gluten = ‘free’

 � AND R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5
ORDER BY R1.saturated_fat + R2.saturated_fat + 

R3.saturated_fat

Such a query is efficient only for constructing packages with 
very small cardinality: larger cardinality requires a larger 
number of self-joins, quickly rendering evaluation time pro-
hibitive (Figure 1). The benefit of this specification is that 
the optimizer can use the traditional relational algebra oper-
ators and augment its decisions with package-specific strat-
egies. However, this method does not apply for packages of 
unbounded cardinality.

Specifying packages using recursion. SQL can express 
package queries by generating and testing each possible 
subset of the input relation. This requires recursion to build 
a powerset table; checking each set in the powerset table for 
the query conditions will yield the result packages. This 
approach has three major drawbacks. First, it is not declara-
tive, and the specification is tedious and complex. Second, it 
is not amenable to optimization in existing systems. Third, 
it is extremely inefficient to evaluate, because the powerset 
table generates an exponential number of candidates.

2.1. PaQL: The package query language
Our goal is to support declarative and intuitive package 
specification. In this section, we describe PaQL, a declara-
tive query language that introduces simple extensions to 
SQL to define package semantics and package-level con-
straints. Figure 2 shows the general syntax of PaQL (left) and 
the specification for the query of Example 1 (right), which we 
use as a running example to demonstrate PaQL’s features. 
Square brackets enclose optional clauses and arguments, 
and a vertical bar separates syntax alternatives. In this speci-
fication, repeat is a non-negative integer; w_expression 
is a Boolean expression over tuple values (as in standard 
SQL) and can only contain references to relation_name 
and relation_alias; st_expression is a Boolean 
expression and obj_expression is an expression over 
aggregate functions or SQL subqueries with aggregate func-
tions; both st_expression and obj_expression can 

evaluating package queries, even if one were to express 
them in SQL. Figure 1 shows the performance of evaluating 
a package query expressed as a multi-way self-join query in 
traditional SQL. As the cardinality of the package increases, 
so does the number of joins, and the runtime quickly 
becomes prohibitive: In a small set of 100 tuples from the 
Sloan Digital Sky Survey (SDSS) dataset,22 SQL evaluation 
takes almost 24 hours to construct a package of 7 tuples. 
Our goal is to extend the database evaluation engine to take 
advantage of external tools, such as ILP solvers, which are 
more effective for combinatorial problems.

The third challenge pertains to query evaluation perfor-
mance and scaling to large datasets. Integer programming 
solvers have two major limitations: they require the entire 
problem to fit in main memory, and they fail when the prob-
lem is too complex (e.g., too many variables and/or too many 
constraints). Our goal is to overcome these limitations 
through sophisticated evaluation methods that allow solv-
ers to scale to large data sizes.

Our work addresses these challenges through the design 
of language and algorithmic support for the specification 
and evaluation of package queries. We present PaQL 
(Package Query Language), a declarative language that pro-
vides simple extensions to standard SQL to support con-
straints at the package level. PaQL is at least as expressive as 
ILP, which implies that evaluation of package queries is 
NP-hard.5 We present a fundamental evaluation strategy, 
Direct, that combines the capabilities of databases and 
constraint optimization solvers to derive solutions to pack-
age queries. The core of our approach is a set of translation 
rules that transform a package query to an ILP. This transla-
tion allows for the use of highly-optimized external solvers 
for the evaluation of package queries. We introduce an 
offline data partitioning strategy that allows package query 
evaluation to scale to large data sizes. The core of our evalu-
ation strategy, SketchRefine, lies in separating the pack-
age computation into multiple stages, each with small 
subproblems, which the solver can evaluate efficiently. In 
the first stage, the algorithm “sketches” an initial sample 
package from a set of representative tuples, while the subse-
quent stages “refine” the current package by solving an ILP 
within each partition. SketchRefine offers strong approxi-
mation guarantees for the package results compared to 
Direct. We present an extensive experimental evaluation 
on real-world data that shows that our query evaluation 
method SketchRefine: (1) is able to produce packages an 
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Figure 1. Traditional database technology is ineffective at package 
evaluation, and the runtime of a SQL formulation of a package query 
grows exponentially. In contrast, tools such as ILP solvers are more 
effective.
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constraints, they are specified over the package result P, for 
example, COUNT(P.*) = 3, which limits the query results to 
packages of exactly 3 tuples.

The global predicates in query  abbreviate aggregates 
that are in reality SQL subqueries. For example, COUNT(P.*) 
= 3, abbreviates (SELECT COUNT(*) FROM P) = 3. Using sub-
queries, PaQL can express arbitrarily complex global con-
straints among aggregates over a package.

Objective clause. The objective clause specifies a ranking 
among candidate package results and appears with either 
the MINIMIZE or MAXIMIZE keyword. It is a condition on the 
package-level, and hence it is specified over the package 
result P, for example, MINIMIZE SUM(P.sat_fat). Similar to 
global predicates, this form is a shorthand for MINIMIZE 
(SELECT SUM(sat_fat) FROM P). A PaQL query with an objec-
tive clause returns a single result: the package that optimizes 
the value of the objective. The evaluation methods that we 
present in this work focus on such queries. In prior work,6 
we described preliminary techniques for returning multiple 
packages in the absence of optimization objectives, but a 
thorough study of such methods is left to future work.

Expressiveness and complexity. PaQL can express gen-
eral ILP, which means that evaluation of package queries is 
NP-complete.4, 5 As a first step in package evaluation, we pro-
ceed to show how a PaQL query can be transformed into a 
linear program and solved using general ILP solvers.

3. ILP FORMULATION
In this section, we present an ILP formulation for package 
queries, which is at the core of our evaluation methods 
Direct and SketchRefine. The results in this section are 
inspired by the translation rules employed by Tiresias15 to 
answer how-to queries.

3.1. PaQL to ILP translation
Let R indicate the input relation of the package query, n = |R| 
be the number of tuples in R, R.attr an attribute of R, P a pack-
age, f a linear aggregate function (such as COUNT and SUM), 
 ∈ {≤,≥} a constraint inequality, and v ∈ R a constant. For 
each tuple ti from R, 1 ≤ i ≤ n, the ILP problem includes a 
nonnegative integer variable xi, xi ≥ 0, indicating the number 
of times ti is included in an answer package. We also use 

 to denote the vector of all integer variables. 
A PaQL query is formulated as an ILP problem using the fol-
lowing translation rules.

Repetition constraint. The REPEAT keyword, expressible 
in the FROM clause, restricts the domain that the variables 

only contain references to package_name, which specifies 
the name of the package result.

Basic package query. The new keyword PACKAGE differ-
entiates PaQL from traditional SQL queries.

1:  SELECT  *� 2:  SELECT  PACKAGE(*) AS P
       FROM       Recipes R	         FROM       Recipes R

The semantics of 1 and 2 are fundamentally different: 1 is 
a traditional SQL query, with a unique, finite result set (the 
entire Recipes table), whereas there are infinitely many pack-
ages that satisfy the package query 2: all possible multisets of 
tuples from the input relation. The result of a package query 
like 2 is a set of packages. Each package resembles a relational 
table containing a collection of tuples (with possible repeti-
tions) from relation Recipes, and therefore a package result of 

2 follows the schema of Recipes. Similar to SQL, the PaQL syn-
tax allows the specification of the output schema in the SELECT 
clause. For example, PACKAGE(sat_fat, kcal) only returns the 
saturated fat and calorie attributes of the package.

Although semantically valid, a query like 2 would not 
occur in practice, as most application scenarios expect few, 
or even exactly one result. We proceed to describe the addi-
tional constraints in the example query  (Figure 2) that 
restrict the number of package results.

Repetition constraints. The REPEAT 0 statement in 
query  from Figure 2 specifies that each tuple from the 
input relation Recipe can appear in a package result at 
most once (no repetitions are allowed). If this restriction is 
absent (as in query 2), the multiplicity of a tuple is 
unbounded. By allowing no repetitions,  restricts the 
package space from infinite to 2n, where n is the size of the 
input relation. Generalizing, REPEAT ρ allows a package to 
repeat tuples up to ρ times, resulting in (2 + ρ)n candidate 
packages.

Base and global predicates. A package query defines two 
types of predicates. A base predicate, defined in the WHERE 
clause, is equivalent to a selection predicate and can be eval-
uated with standard SQL: any tuple in the package needs to 
individually satisfy the base predicate. For example, query  
from Figure 2 specifies the base predicate: R.gluten = ‘free’. 
Since base predicates directly filter input tuples, they are 
specified over the input relation R. Global predicates are the 
core of package queries, and they appear in the new SUCH 
THAT clause. Global predicates are higher-order than base 
predicates: they cannot be evaluated on individual tuples, 
but on tuple collections. Since they describe package-level 

SELECT PACKAGE (∗|column_name [, . . .]) [AS] package_name
FROM relation_name [AS] relation_alias

[REPEAT repeat] [, . . .]
[WHERE w_expression ]
[SUCH THAT st_expression ]
[ (MINIMIZE|MAXIMIZE) obj_expression ]

PACKAGE (∗) AS P
Recipes R REPEAT 0FROM

WHERE R.gluten = ‘free’
SUCH THAT COUNT (P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.sat_fat)

PaQL query for Example 1PaQL syntax specification

: SELECT 

Figure 2. Specification of the PaQL syntax (left), and the PaQL query for Example 1 (right).
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not included in the output package, and xi = k means that 
tuple ti is included k times. Thus, the result of  is the package: 
{t2, t3, t5}.

4. SCALABLE PACKAGE EVALUATION
The Direct algorithm has two crucial drawbacks. First, it is 
only applicable if the input relation is small enough to fit 
entirely in main memory: ILP solvers, such as IBM’s CPLEX, 
require the entire problem to be loaded in memory before 
execution. Second, even for problems that fit in main mem-
ory, this approach may fail due to the complexity of the inte-
ger problem. In fact, ILP is a notoriously hard problem, and 
modern ILP solvers use algorithms, such as branch-and-
cut,16 that often perform well in practice, but can “choke” 
even on small problem sizes due to their exponential worst-
case complexity.8 This may result in unreasonable perfor-
mance if the solvers use too many resources (main memory, 
virtual memory, CPU time), eventually thrashing the entire 
system.

In this section, we present SketchRefine, an approxi-
mate divide-and-conquer evaluation technique for efficiently 
answering package queries on large datasets. Rather than  
solving the original large problem with Direct, SketchRefine 
smartly decomposes a query into smaller queries, formulates 
them as ILP problems, and employs an ILP solver as a black-
box evaluation method to answer each individual query. By 
breaking down the problem into smaller subproblems, the 
algorithm avoids the drawbacks of Direct.

The algorithm is based on an important observation: sim-
ilar tuples are likely to be interchangeable within packages. A 
group of similar tuples can therefore be “compressed” to a 
single representative tuple for the entire group. 
SketchRefine sketches an initial answer package using 
only the set of representative tuples, which is substantially 
smaller than the original dataset. This initial solution is 
then refined by evaluating a subproblem for each group, iter-
atively replacing the representative tuples in the current 
package solution with original tuples from the dataset. 
Figure 4 provides a high-level illustration of the three main 
steps of SketchRefine:

1.  Offline Partitioning (Section 4.1): The algorithm 
assumes a partitioning of the data into groups of similar 
tuples, with a representative tuple chosen for each 
group. This partitioning is performed offline (not at 
query time).

2.  Sketch (Section 4.2.1): SketchRefine sketches an  

can take on. Specifically, REPEAT ρ implies 0 ≤ xi ≤ ρ + 1.
Base predicate. Let b be a base predicate, for example, 

R.gluten = ‘free’, and Rb the relation containing tuples from 
R satisfying b. We encode b by setting xi = 0 for every tuple 
ti ∉ Rb.

Global predicate. Each global predicate in the SUCH 
THAT clause takes the form f (P)  v. For each such predicate, 
we derive a linear function  over the integer variables. 
A cardinality constraint f(P) = COUNT(P.*) is translated into a 
linear function . A summation constraint f(P) = 
SUM(P.attr) is translated into a linear function 

. Other nontrivial constraints and general 
Boolean expressions over the global predicates can be 
encoded into a linear program with the help of Boolean vari-
ables and linear transformation tricks found in the litera-
ture.3 We refer to the original version of this paper for further 
details.4, 5

Objective clause. We encode MAXIMIZE f(P) as max , 
where  is the encoding of f(P). Similarly MINIMIZE f(P) is 
encoded as min .

Example 2 (ILP translation). Figure 3 shows a toy example 
of the Recipes table, with two columns and 5 tuples. To trans-
form  into an ILP, we first create a non-negative, integer vari-
able for each tuple: x1, …, x5. The cardinality constraint 
specifies that the sum of the xi variables should be exactly 3. 
The global constraint on SUM(P.kcal) is formed by multiplying 
each xi with the value of the kcal column of the corresponding 
tuple, and specifying that the sum should be between 2 and 2.5. 
The objective of minimizing SUM(P.sat_fat) is similarly formed 
by multiplying each xi with the sat_fat value of the correspond-
ing tuple.

3.2. Query evaluation with DIRECT
Using the ILP formulation, we develop Direct, our basic 
evaluation method for package queries. In Section 4, we 
extend this technique to our main algorithm, SketchRefine, 
which supports efficient package evaluation in large datas-
ets. Package evaluation with Direct employs three steps:

1.  Base Relations: We first compute the base relations, 
such as Rb, Rc, and Rp, with a series of standard SQL 
queries, one for each, or by simply scanning R once 
and populating these relations simultaneously.

2.  ILP Formulation: We transform the PaQL query to an 
ILP problem using the rules described in Section 3.1. 
After this phase, all variables xi such that xi = 0 can 
be eliminated from the ILP problem because the cor-
responding tuple ti cannot appear in any package 
solution.

3.  ILP Execution: We employ an off-the-shelf ILP solver, 
as a black box, to get a solution to each of the integer 
variables xi. Each xi informs the number of times tuple 
ti should be included in the answer package.

Example 3 (ILP solution). The ILP solver operating on the 
program of Figure 3 returns the variable assignments to xi 
that lead to the optimal solution; xi = 0 means that tuple ti is 

Recipes
sat_fat kcal

t1 x1 = 0
= 1
= 1
= 0
= 1

t2 x2

t3 x3

t4 x4

t5

7.1
5.2
3.2
6.5
2.0

0.45
0.55
0.25
0.15
1.20 x5

min 7.1x1 + 5.2x2 + 3.2x3 + 6.5x4 + 2.0x5
s.t. x1 + x2 + x3 + x4 + x5 = 3

0.45x1 + 0.55x2 + 0.25x3
+ 0.15x4 + 1.20x5 ≥ 2.0

0.45x1 + 0.55x2 + 0.25x3
+ 0.15x4 + 1.20x5 ≤ 2.5

x1,x2,x3,x4,x5 ∈ {0, 1}

Figure 3. Example ILP formulation and solution for query Q, on a 
sample Recipe dataset. There are only two packages that satisfy all 
the constraints, namely {t2, t3, t5} and {t1, t2, t5}, but the first one is the 
optimal because it minimizes the objective function.
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setting can lead to an order of magnitude improvement in 
query response time.

The diameter bounds, wi j, are not required, but they can 
be enforced to ensure a desired approximation guarantee. 
In general, enforcing the diameter limits may cause the 
resulting partitions to become excessively small. While still 
obeying the approximation guarantees, this could increase 
the number of resulting partitions and thus degrade the 
running time performance of SketchRefine. This is an 
important trade-off between running time and quality that 
we also observe in our experiments, and it is a very common 
characteristic of most approximation schemes.24

Partitioning method. Our partitioning procedure is 
based on k-dimensional quad-tree indexing.11 The method 
recursively partitions a relation into groups until all the 
groups satisfy the size threshold and meet the diameter 
limits. First, relation R is augmented with an extra group 
ID column gid, such that t.gid = i if tuple t is assigned to 
group Gi. The procedure initially creates a single group G1 
that includes all the original tuples from relation R, by ini-
tializing gid = 1 for all tuples. Our method recursively com-
putes the sizes and diameters of the current groups, as well 
as the centroid of each group. It then partitions the groups that 
violate either the size or the diameter limits, using the cen-
troids as partitioning boundaries. In the last iteration, the 
centroids for each group become the representative tuples, 

, 1 ≤ i ≤ m, and get stored in a new representative relation R~ 
(gid, attr1, …, attrk).

One-time cost. Partitioning is an expensive procedure. 
Partitioning the data in advance avoids this cost at query 
time. For a known workload, our experiments show that 
partitioning the dataset on the union of all query attributes 
provides the best performance in terms of query evaluation 
time and approximation error for the computed answer 
package. We also demonstrate that our query evaluation 
approach is robust to a wide range of partition sizes, and to 
imperfect partitions that cover more or fewer attributes 
than those used in a particular query. This means that, 
even without a known workload, a partitioning performed 
on all of the data attributes still provides good perfor-
mance. Note that the same partitioning can be used to sup-
port different queries over the same dataset. In our 

initial package by evaluating the package query only 
over the set of representative tuples.

3.  Refine (Section 4.2.2): Finally, SketchRefine transforms 
the initial package into a complete package by replacing 
each representative tuple with some of the original tuples 
from the same group, one group at a time.

SketchRefine always constructs approximate feasible 
packages, that is, packages that satisfy all the query con-
straints, but with a possibly sub-optimal objective value that 
is guaranteed to be within certain approximation bounds. 
SketchRefine may suffer from false infeasibility, which 
happens when the algorithm reports a feasible query to be 
infeasible. The probability of false infeasibility is, however, low 
and bounded. We formalize these properties in Section 4.3.

In the subsequent discussion, we use R(attr1, …, attrk) to 
denote an input relation with k attributes. R is partitioned 
into m groups G1, …, Gm. Each group Gi ⊆ R, 1 ≤ i ≤ m, has a 
representative tuple , which may not always appear in R. 
We denote the partitioned space with  . 
We refer to packages that contain representative tuples as 
sketch packages and packages with only original tuples as 
complete packages (or simply packages). We denote a com-
plete package with p and a sketch package with p , where  

 ⊆   is the set of groups that are yet to be refined to trans-
form p  to a complete answer package p.

4.1. Offline partitioning
SketchRefine relies on an offline partitioning of the input 
relation R into groups of similar tuples. Partitioning is based 
on a set of partitioning attributes from the input relation R, a 
size threshold, and a set of diameter bounds. The size thresh-
old t, 1 ≤ t ≤ n, restricts the size of each partitioning group Gi, 
1 ≤ i ≤ m, to a maximum of t original tuples, that is, |Gi| ≤ t. 
The diameter di j ≥ 0 of a group Gi, 1 ≤ i ≤ m, on attribute attrj, 1 
≤ j ≤ k, is the greatest absolute distance between all pairs of 
tuples within group Gi. The diameter bounds, wi j ≥ 0, 1 ≤ i ≤ m, 
1 ≤ j ≤ k, require all diameters to be bounded by di j ≤ wi j.

Setting the partitioning parameters. The size threshold, 
t, affects the number of partitions, m: a lower t leads to 
smaller partitions, but more of them (larger m). For best 
response time of SketchRefine, t  should be set so that 
both m and t are small. Our experiments show that a proper 
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Figure 4. The original tuples (a) are partitioned into four groups and a representative is constructed for each group (b). The initial sketch 
package (c) contains only representative tuples, with possible repetitions up the size of each group. The refine query for group G1 (d) 
involves the original tuples from G1 and the aggregated solutions to all other groups (G2, G3, and G4). Group G2 can be skipped (e) because no 
representatives could be picked from it. Any solution to previously refined groups is used while refining the solution for the remaining groups 
(f and g). The final approximate package (h) contains only original tuples.
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•	 It derives package  from p , by eliminating all 
instances of  from p . That is,  = p  \  . This is a solu-
tion to all groups except Gi.

•	 The algorithm then constructs a refine query, i(p ), 
which searches for a set of tuples pi ⊆ Gi to replace the 
eliminated representatives:

i( p ): SELECT	    PACKAGE(*) AS pi

FROM	    Gi REPEAT 0
WHERE	    Gi .gluten = ‘free’
SUCH THAT
COUNT( pi.*) + COUNT( .*) = 3 AND
SUM(pi.kcal) + SUM( .kcal) BETWEEN 2.0 AND 2.5
MINIMIZE      SUM(pi.sat_fat)

•  The algorithm adds the result of i(p ), pi, in the current 
solution, p . Now, group Gi is refined with actual tuples.

In i( p ), COUNT( .*) and SUM( .kcal) are values com-
puted directly on  before the query is formed. They are 
used to modify the original constraint bounds to account for 
tuples and representatives already chosen for all the other 
groups. The global constraints in i(p ) ensure that the combi-
nation of tuples in pi and  satisfy the original query .  
Thus, this step produces the new refined sketch package  
p′ ′ = pi ∪ pi, where ′ = .

Since Gi has at most t tuples, the ILP problem correspond-
ing to i(p ) has at most t variables. This is typically small 
enough for the black-box ILP solver to solve using the Direct 
method. Similar to the sketch query, if t is too large, 
SketchRefine can evaluate the query recursively: the tuples in 
group Gi are further partitioned into smaller groups until the 
subproblems reach a size that can be efficiently solved 
directly.

Ideally, the Refine step will only process each group with 
representatives in the initial sketch package once. However, 
the order of refinement matters as each refinement step is 
greedy: it selects tuples to replace the representatives of a 
single group, without considering the effects of this choice 
on other groups. As a result, a particular refinement step 
may render the query infeasible (no tuples from the remain-
ing groups can satisfy the constraints). When this occurs, 
Refine employs a greedy backtracking strategy that recon-
siders groups in a different order.

Greedy backtracking. Refine activates backtracking when 
it encounters an infeasible refine query, i(p ). Backtracking 
greedily prioritizes the infeasible groups. This choice is moti-
vated by a simple heuristic: if the refinement on Gi fails, it is 
likely due to choices made by previous refinements; there-
fore, by prioritizing Gi, we reduce the impact of other groups 
on the feasibility of i(p ). This heuristic does not affect the 
approximation guarantees.

The algorithm logically traverses a search tree (which is 
only constructed as new branches are created and new 
nodes visited), where each node corresponds to a unique 
sketch package p . The traversal starts from the root, corre-
sponding to the initial sketch package, where no groups 
have been refined (  = ), and finishes at the first encoun-
tered leaf, corresponding to a complete package (  = ). The 

experiments, we show that a single partitioning performs 
consistently well across different queries.

4.2. Query evaluation with SketchRefine
During query evaluation, SketchRefine first sketches a 
package solution using the representative tuples (Sketch), 
and then it refines it by replacing representative tuples with 
original tuples (Refine). We describe these steps using the 
example query  from Figure 2.

Sketch. Using the representative relation R~ produced by 
the partitioning, the Sketch procedure constructs and eval-
uates a sketch query, (R~). The result is an initial sketch pack-
age, p , containing representative tuples that satisfy the 
same constraints as the original query :

(R~): SELECT       PACKAGE(*) AS p
FROM         R~

WHERE      R
~.gluten = ‘free’

SUCH THAT
COUNT( p .*) = 3 AND
SUM(                             p .kcal) BETWEEN 2.0 AND 2.5 AND
(select count(*) from p  where gid = 1) ≤ |G1|
AND …
(select count(*) from p  where gid = m) ≤ |Gm|

MINIMIZE  SUM( p .sat_fat)

The new global constraints (in bold) ensure that every 
representative tuple does not appear in p  more times 
than the size of its group, Gi. This accounts for the repeti-
tion constraint REPEAT 0 in the original query. 
Generalizing, with REPEAT ρ, each  can be repeated up to 
|Gi|(1 + ρ) times. These constraints are omitted from (R~) if 
the original query does not contain a repetition 
constraint.

Since the representative relation R~ contains exactly m 
representative tuples, the ILP problem corresponding to 
this query has only m variables. This is typically small 
enough for the black-box ILP solver to manage directly, 
and thus we can solve this package query using the Direct 
method. If m is too large, we can solve this query recur-
sively with SketchRefine: the set of m representatives 
is further partitioned into smaller groups until  
the subproblems reach a size that can be efficiently 
solved directly.

The Sketch procedure fails if the sketch query (R~) is 
infeasible, in which case SketchRefine reports the orig-
inal query  as infeasible. This may constitute false infea-
sibility, if  is actually feasible. In Section 4.3, we show 
that the probability of false infeasibility is low and 
bounded.

Refine. Using the sketched solution over the represen-
tative tuples, the Refine procedure iteratively replaces 
the representative tuples with tuples from the original 
relation R, until no more representatives are present in 
the package. The algorithm refines the sketch package  
p  one group at a time. For a group Gi with representative 

, let  ⊆ p  be the set of representatives picked from  
Gi (i.e.,  with possible duplicates). The algorithm pro-
ceeds as follows:
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algorithm terminates as soon as it encounters a complete 
package, which it returns. The algorithm assumes a (ini-
tially random) refinement order for all groups in  and 
places them in a priority queue. During refinement, this 
group order can change by prioritizing groups with infea-
sible refinements.

Runtime complexity. In the best case, all refine queries 
are feasible and the algorithm never backtracks. In this case, 
the algorithm makes up to m calls to the ILP solver to solve 
problems of size up to t, one for each refining group. In the 
worst case, SketchRefine tries every group ordering lead-
ing to an exponential number of calls to the ILP solver. Our 
experiments show that the best case is the most common 
and backtracking occurs infrequently.

4.3. Theoretical guarantees
We present two important results on the theoretical guaran-
tees of SketchRefine: (1) it produces packages that closely 
approximate the objective value of the packages produced 
by Direct; (2) the probability of false negatives (i.e., queries 
incorrectly deemed infeasible) is low and bounded. The 
extended version of this work4 includes the formal proofs of 
both results.

For a desired approximation parameter e, we can derive 
diameter bounds wi j for the offline partitioning that guaran-
tee that SketchRefine will produce a package with objec-
tive value (1±e)-factor close to the objective value of the 
solution generated by Direct for the same query.

Theorem 1 (Approximation Bounds). Let R(attr1, . . ., attrk) 
be a relation with k attributes, and let  be a feasible package 
query with a maximization (minimization, resp.) objective over 
R. Let S be an exact solver that produces an answer to  with 
optimal objective value OPT. We denote with ALG the objective 
value of the package returned by SketchRefine using S as a 
black-box solver. For any e ∈ [0, 1) (e ∈ [0, ∞), resp.), there 
exists b ∈ [0, 1) (b ∈ [1, ∞), resp.) that depends on e, such that if 
R is partitioned into m groups with diameter limits:

� (1)

then ALG ≥ (1 − e)OPT (ALG ≤ (1 + e)OPT, resp.).

For a feasible query , false infeasibility may happen in two 
cases: (1) when the sketch query (R~) is infeasible; (2) when 
greedy backtracking fails (possibly due to suboptimal parti-
tioning). In both cases, SketchRefine would (incorrectly) 
report a feasible package query as infeasible. False negatives 
are, however, extremely rare, as the following theorem 
establishes.

Theorem 2 (False-infeasibility Bounds). For any query  
and any random package P, if P is feasible for , then with high 
probability: (1) the Sketch query  (R~) is feasible; (2) all 
Refine queries i(p ), 1 ≤ i ≤ m, are feasible. Thus, 
SketchRefine returns a feasible result.

5. EXPERIMENTAL EVALUATION
This section presents an extensive experimental evaluation of 

our techniques for package query execution on real-world 
data. The results show the following properties of our meth-
ods: (1) SketchRefine evaluates package queries an order of 
magnitude faster than Direct; (2) SketchRefine scales up to 
sizes that Direct cannot handle directly; (3) SketchRefine 
produces packages of high quality (similar objective value as 
the packages returned by Direct). We have also performed 
extensive experiments on benchmark data that demonstrate 
the robustness of SketchRefine under imperfect partition-
ing and different approximation parameters.4, 5

5.1. Experimental setup
We implemented our package evaluation system as a layer 
on top of PostgreSQL.a The system interacts with the DBMS 
via SQL and uses IBM’s CPLEX12 as the black-box ILP solver. 
A package is materialized into the DBMS as a relation, only 
when necessary (e.g., to compute its objective value). The 
experiments compare Direct with SketchRefine. Both 
methods use the PaQL to ILP translation presented in 
Section 3.1: Direct translates and solves the original query; 
SketchRefine translates and solves the subqueries. We 
demonstrate the performance of our query evaluation meth-
ods using a real-world dataset consisting of approximately 
5.5 million tuples extracted from the Galaxy view of the 
SDSS,22 and a workload of seven feasible package queries 
(Figure 5) constructed by adapting some of the real-world 
sample SQL queries available directly from the SDSS 
Website. The experiments use the following efficiency and 
effectiveness metrics:

Response time. We measure response time as wall-clock 
time to generate an answer package. This includes the time 
to translate the PaQL query into one or several ILP problems, 
the time to load the problems to the solver, and the time the 
solver takes to produce a solution.

Approximation ratio. We compare the objective value of a 
package returned by SketchRefine with the objective value 
of the package returned by Direct on the same query. Using 
ObjS and ObjD to denote the objective values of SketchRefine 
and Direct, respectively, we report the empirical approxima-
tion ratio  for maximization queries, and  for minimiza-
tion queries. An approximation ratio of one indicates that 
SketchRefine produces a solution with same objective 
value as the solution produced by the solver on the entire 
problem. The higher the approximation ratio, the lower the 
quality of the result package.

5.2. Results and discussion
We evaluate two fundamental aspects of our algorithms: (1) 

Query 1 2 3 4 5 6 7
Objective

# of SUM constraints
COUNT (∗)

max
2

min
4

min
2

min
1

min
1

min
5

max
5

BETWEEN 5 AND 10

Figure 5. Summary of queries in the Galaxy workload. The full PaQL 
queries appear in the extended version of this work.4

a  Our code is publicly available on our project Website: http://packagebuilder.
cs.umass.edu.
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their query response time and approximation ratio with 
increasing dataset sizes; (2) the impact of varying partition-
ing size thresholds, t, on SketchRefine’s performance.

Query performance as dataset size increases. The first set 
of experiments evaluates the scalability of our methods on 
input relations of increasing size. First, we partition each 
dataset using the union of all package query attributes in the 
workload: we refer to these partitioning attributes as the 
workload attributes. We do not enforce diameter conditions, 
wi j, during partitioning for three reasons: (1) because the 
diameter conditions may affect the size of the resulting par-
titions, and we want to tightly control the partition size 
through the parameter t; (2) to show that an offline parti-
tioning can be used to answer efficiently and effectively both 
maximization and minimization queries, even though they 
would normally require different diameters; (3) to demon-
strate the effectiveness of SketchRefine in practice, even 
without having theoretical guarantees in place.

We perform offline partitioning with partition size 
threshold t set to 10% of the dataset size. We derive the par-
titionings for the smaller data sizes (less than 100% of the 
dataset), by randomly removing tuples from the original 
partitions. This operation is guaranteed to maintain the 
size condition.

Figure 6 reports our scalability results on the Galaxy 
workload. The figure displays the query response time in 
seconds on a logarithmic scale, averaged across 10 runs for 
each datapoint. At the bottom of each plot, we also report 
the mean and median approximation ratios across all data-
set sizes. The graph for Q2 does not report approximation 
ratios because Direct evaluation fails to produce a solution 

for this query across all data sizes. We observe that Direct 
can scale up to millions of tuples in three of the seven que-
ries. Its runtime performance degrades, as expected, when 
data size increases, but even for very large datasets Direct is 
usually able to answer the package queries in less than a few 
minutes. However, Direct has high failure rate for some of 
the queries, indicated by the missing data points in some 
graphs (queries Q2, Q3, Q6, and Q7). This happens when 
CPLEX uses the entire available main memory while solving 
the corresponding ILP problems. For some queries, such as 
Q3 and Q7, this occurs with bigger dataset sizes. However, 
for queries Q2 and Q6, Direct even fails on small data. This 
is a clear demonstration of one of the major limitations of 
ILP solvers: they can fail even when the dataset can fit in 
main memory, due to the complexity of the integer problem. 
In contrast, our scalable SketchRefine algorithm is able to 
perform well on all dataset sizes and across all queries. 
SketchRefine consistently performs about an order of 
magnitude faster than Direct across all queries. Its run-
ning time is consistently below one or two minutes, even 
when constructing packages from millions of tuples.

Both the mean and median approximation ratios are very 
low, usually all close to one or two. This shows that the sub-
stantial gain in running time of SketchRefine over Direct 
does not compromise the quality of the resulting packages. 
Our results indicate that the overhead of partitioning with 
diameter limits is often unnecessary in practice. Since the 
approximation ratio is not enforced, SketchRefine can 
potentially produce bad solutions, but this happens rarely.

Effect of varying partition size threshold. In the second 
set of experiments, we vary t, which is used during 
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Figure 6. Scalability on the Galaxy workload. SketchRefine uses an offline partitioning computed on the full dataset, using the workload 
attributes, t = 10% of the dataset size, and no diameter condition. Direct scales up to millions of tuples in about half of the queries, but it fails 
on the other half. SketchRefine scales well in all cases and runs about an order of magnitude faster than Direct. Its approximation ratio is 
always low, even though the partitioning is constructed without diameter conditions.

Figure 7. Impact of partition size threshold t on the Galaxy workload, using 30% of the original dataset. Partitioning is performed at each 
value of t using all the workload attributes, and with no diameter condition. The baseline Direct and the approximation ratios are only shown 
when Direct is successful. The results show that t has a major impact on the running time of SketchRefine, but almost no impact on the 
approximation ratio. Direct can be an order of magnitude faster than Direct with proper tuning of t.
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partitioning to limit the size of each partition, to study its 
effects on the query response time and the approximation 
ratio of SketchRefine. In all cases, along the lines of the 
previous experiments, we do not enforce diameter condi-
tions. Figure 7 show the results obtained on the Galaxy work-
load, using 30% of the original data. We vary t from higher 
values corresponding to fewer but larger partitions, on the 
left-hand size of the x-axis, to lower values, corresponding to 
more but smaller partitions. When Direct is able to pro-
duce a solution, we also report its running time (horizontal 
line) as a baseline for comparison.

The results show that the partition size threshold has a 
major impact on the execution time of SketchRefine, with 
extreme values of t (either too low or too high) often resulting 
in slower running times than Direct. With bigger partitions, 
on the left-hand side of the x-axis, SketchRefine takes about 
the same time as Direct because both algorithms solve prob-
lems of comparable size. When the size of each partition starts 
to decrease, moving from left to right on the x-axis, the 
response time of SketchRefine decreases rapidly, reaching 
about an order of magnitude improvement with respect to 
Direct. Most of the queries show that there is a “sweet spot” 
at which the response time is the lowest: when all partitions 
are small, and there are not too many of them. This point is 
consistent across different queries, showing that it only 
depends on the input data size. After that point, although the 
partitions become smaller, the number of partitions starts to 
increase significantly. This increase has two negative effects: it 
increases the number of representative tuples, and thus the 
size and complexity of the initial Sketch query, and it 
increases the number of groups that Refine may need to 
refine to construct the final package. This causes the running 
time of SketchRefine, on the right-hand side of the x-axis, to 
increase again and reach or surpass the running time of 
Direct. The mean and median approximation ratios are in all 
cases very close to one, indicating that SketchRefine retains 
very good quality regardless of the partition size threshold.

6. CONCLUSION AND FUTURE WORK
We introduced a complete system that supports the declarative 
specification and efficient evaluation of package queries. We 
presented PaQL, a declarative extension to SQL, and we devel-
oped a flexible approximation method, with strong theoretical 
guarantees, for the evaluation of PaQL queries on large-scale 
datasets. Our experiments on real-world data demonstrate that 
our scalable evaluation strategy is effective and efficient over 
varied data sizes and queries. We have further extended our 
techniques and experimental evaluation and placed our 
research in the context of related work.4

Our work so far focused on deterministic package queries, 
but many applications of constrained optimization require sup-
port for uncertainty: airline fleet scheduling has uncertain pas-
senger demands, or investment portfolio optimization deals 
with uncertain returns and risks, etc. We are currently working 
on extending our system to support optimization of the 
expected value of an objective function subject to expectation 
constraints of the form E(SUM(x) ) ≥ b, or probabilistic con-
straints of the form SUM(x) ≥ b WITH PROBABILITY ≥ 95%. The 
challenge is to ensure robust optimal solutions, computed © 2019 ACM 0001-0782/19/2 $15.00
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efficiently, that behave well under the many possible realiza-
tions of the uncertain data.

Another open problem is to efficiently handle incremental 
package queries to enable user-facing, interactive constrained 
optimization applications such as vacation planning. Rather 
than calling the solver for each incremental query variation 
from scratch, we are exploring the use of efficient database 
techniques, such as top-k querying, to provide faster, albeit 
approximate, solutions for interactive applications.
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