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ABSTRACT
We present Qetch, a tool where users freely sketch patterns on
a scale-less canvas to query time series data without specifying
query length or amplitude. We study how humans sketch time
series patterns — humans preserve visually salient perceptual
features but often non-uniformly scale and locally distort a
pattern — and we develop a novel matching algorithm that
accounts for human sketching errors. Qetch enables the easy
construction of complex and expressive queries with two key
features: regular expressions over sketches and relative po-
sitioning of sketches to query multiple time-aligned series.
Through user studies, we demonstrate the effectiveness of
Qetch’s different interaction features. We also demonstrate
the effectiveness of Qetch’s matching algorithm compared
to popular algorithms on targeted, and exploratory query-by-
sketch search tasks on a variety of data sets.

Author Keywords
Time series querying by sketching; scale-less sketches;
regular expressions

INTRODUCTION
Our ability to describe complex objects with hand-drawn
sketches and easily recognize them predates our ability to
do so with language. Many search interfaces have capitalized
on this ability, providing users with intuitive sketching inter-
faces: users sketch their object of interest, be it an image, a
3D-model or a chart pattern, and a matching algorithm finds
similar objects in an image, model or time series database [11,
37, 28]. Generally, such querying by sketching systems as-
sume that in a “well-engineered feature space, sketched objects
resemble their real-world counterparts [10]”. Yet, this funda-
mental assumption is often violated: “most humans are not
faithful artists [10].” While simple stick-figures or cartoon-
like sketches drastically differ from their real world counter-
parts, differences between a sketched chart pattern ( ) and
actual time series data ( ) are generally perceived as less
drastic. Not surprisingly, the accuracy of many existing time
series matching algorithms is often evaluated by how well
they cluster similar time series patterns extracted from the
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data ( , ) — and not how well they cluster data patterns
with hand-drawn sketches [8]. Consequently, “good” match-
ing algorithms may fail to produce good similarity rankings
when “goodness” is assessed by humans [9]. Most query-
by-sketching interfaces attempt to reconcile imperfect human
sketches with how time series matching algorithms search for
data through (a) overlays: users sketch directly above the pat-
tern they are looking for to retrieve similar patterns in the data,
(b) shape restrictions: instead of free-form sketches, users
can only sketch sequences of straight lines, (c) pre-sketching
constraints: users specify the temporal range they are inter-
ested in and the variance of amplitude they are willing to
tolerate. In this work, we reconsider the design of query-by-
sketching interfaces for time series data to allow users to freely
sketch patterns on an empty, scale-less canvas. With Qetch,
we adopt a top-down design approach where our interface de-
sign choices ultimately cause us to develop a novel matching
algorithm that tolerates the absence of time and amplitude
scales on a sketch.

Consider an economist looking for transient historical periods
of recession marked by a sharp decrease in gross domestic
product (GDP) and then a rise, as well as an increase in unem-
ployment and then a fall. With Qetch, the economist simply
sketches two shapes, a rounding bottom ( ) and a plateau ( ),
to immediately visualize results, from which she can further
refine her query. She can control the order of events across
the two time series through the relative horizontal positioning
of the sketches on the canvas: overlapping positions indicate
that the GDP query pattern should co-occur with the unem-
ployment one. She can easily search for more complex GDP
recession patterns such a double-dip recessions by annotating
her sketch with a regular expression repetition operator. With
existing systems, however, the economist has to consider ques-
tions which are not straightforward to answer: how long was
the recession? how big was the fall in gross domestic product?
how high was unemployment? Worse, she may have to start
from a known recession period and overlay her sketches on it
to find other recession periods. She may also have to use dif-
ferent input modes to specify how queries across different data
sets relate. In Qetch, the sketching canvas is the primary and
only mode of query specification. This narrows the gulf of exe-
cution [35] as users sketch the query that matches their mental
image of the expected result. Moreover, users assess the accu-
racy of a match by visually examining it. Thus, by presenting
the sketch query alongside visualizations of results, users can
easily understand how to modify their sketches to eliminate
unintended matches. This narrows the gulf of evaluation [35].
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Hourly bit traffic in the UK academic network backbone 11/19/04 to 01/27/05

(c) Cup-with-handle in 
Amazon stock prices, 95 
days 7/99 to 11/99 

(b) Inverted head-and-shoulders in 
Alaska Air Group stock prices, 108 
days 08/98 to 12/98

(d) Rounded-bottom, 304 
days from 11/08 to 9/09 

 (e) Falling peaks: a six day 
decrease in traffic before 
12/25/04 (Christmas)

 (f) Seven peaks: Low traffic 
from 12/26/04 to 1/3/05 
(Christmas to New Year’s Eve)

(g) Sharp rise: An ECG anomaly 
lasting 650ms in record 302 

(h) Sharp dip: An ECG anomaly 
lasting 525ms in record 301 

Daily stock prices in 8 year data sets Monthly Insurance Equity from 
the Central Bank of Iceland 

Electrocardiograms (ECGs) from MIT-BH ST Changes, 10s data sets 
with measurements every 3-5ms 

(a) Head-and-shoulders in 
Amazon stock prices, 150 
days 10/99 to 3/00

Figure 1. In a crowd study, we asked 150 crowd workers to sketch the marked regions from different time series. A canonical sketch is displayed for
each of the eight visually distinct patterns. Table 1 provides a sample of the crowd workers’ sketches.

In this paper, we begin by describing an initial crowd-study
where we collected a database of human sketches for eight
visually distinct patterns for querying different time series (Fig-
ure 1). By qualitatively studying these sketches, we identified
several sketching behaviors and errors. This study motivates
Qetch’s interface design and matching algorithm. Given the
extensive research in time series querying, we provide a brief
description of several querying interfaces and matching al-
gorithms and how they relate to or differ from Qetch. We
describe Qetch’s query-by-sketch interface, which supports
expressive querying features such as regular expressions over
sketches and querying across multiple data sets. We describe
Qetch’s matching algorithm in detail. Finally, we demonstrate
the effectiveness of Qetch’s interaction features through a
user study, we compare the querying performance of Qetch’s
matching algorithm to commonly-used time series algorithms
like dynamic time warping (DTW) and Euclidean distance
(ED) on targeted search tasks and we compare the querying
performance as assessed by users on a variety of exploratory
search tasks.

FROM STUDY TO DESIGN
We conducted a mechanical turk study, where we provided 150
workers with line chart visualizations of eight different time
series data from the domains of finance, economics, technol-
ogy and medicine [36, 5, 14]. Within each chart, we marked
a region of interest (see Figure 1 for a description of each
time series and region) and asked the workers to sketch the
region on an empty canvas with the help of their mouse (or
other available input device such as track pad, touch-screen,
stylus, etc). The presentation of charts was randomized across
workers. The marked-up visualization and the canvas were
on separate pages. While workers could navigate back and
forth between the marked-up visualization and the canvas, they
could not sketch while also viewing the reference region. We
chose to set up the experiment as such to ensure that workers
were sketching the reference region rather than tracing it. We
chose these data sets and reference regions as they represent
a diverse set of realistic applications of time series querying1.
1The regions marked on the ECGs do not represent arrhythmias: we
avoided diagnostic patterns to respect the sensitivities of the workers.

We collected a total of 1200 sketches. We cleaned this data
set by asking a different set of crowd workers to confirm if a
sketch indeed represents a valid representation of the reference
region. We polled a total of 41 workers receiving five distinct
votes per sketch. We accepted a sketch as valid if three or more
of the five workers voted ‘valid’. We discarded 270 sketches
from the initial 1200. Table 1 provides a sample of these valid
sketches. We then closely examined each valid sketch and
across all sketches we observed and coded the following:

1. A preservation of visually salient perceptual features:
This observation resonates with findings from visual percep-
tion research which concludes that humans decompose com-
plex shapes into parts such as upward or downward slopes,
peaks and troughs [29, 19, 42]. We noticed that the more
pronounced the feature – the longer the slope, the deeper or
wider the trough or peak, the more likely it was sketched (See
Table 1). Only 11% of the valid sketches were incomplete:
for example, they missed one of the peaks in the seven peaks
pattern. Also, 7% of sketches had some noise: tiny bumps on
curve segments that are not representative of key perceptual
features and may be due to hand jitter.
2. Non-uniform global scaling: Most sketches cannot be uni-
formly stretched or compressed while preserving aspect ratio
to fit the marked region of interest as visualized.
3. Local distortions: Workers exaggerated features such as
the width or depth of a peak or trough or the relative dif-
ference between the heights of smaller and larger peaks in
a pattern. This observation resonates with research on how
humans sketch [10].

This study influenced the design of Qetch. We carefully de-
signed Qetch’s interface with the sketching canvas as the pri-
mary mode of query specification. We lightly smooth sketches
and represent them with Bezier curves to eliminate hand jitter
and allow easy sketch modification. We provide support for
expressing complex queries such as regular expressions over
sketches to allow users to easily represent pattern repetitions
or negations, which can be difficult to sketch without such sup-
port (recall the missing peaks in the seven peaks pattern). We
support ordered querying across multiple time-aligned series.
We integrate smoothing during matching and result visualiza-
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Sketch Samples

DTW ranks the reference region at 
16+ and Qetch ranks it within 1-15
DTW ranks the reference region 
within 1-15 and Qetch ranks it at 16+

Queries

Typical sketches preserve key perceptual 
features but have local distortions.

Table 1. Samples of sketches drawn by crowd workers for each marked region in Figure 1. Most sketches resemble the first three rows. A few sketches
are similar to those from the last row: these valid sketches are seemingly poor; they miss or add extraneous features, are incomplete or slightly disagree
with the reference region. Note that DTW ranks the reference region in its top 15 results when queried with sketches from the last row.

tion to allow users to better visualize the similarity between
their rough sketch and the matched time series regions. Since
sketches are devoid of time scales, we allow users to sort their
results by length in addition to distance from sketch.

To support query-by-sketching we require a matching algo-
rithm that is sensitive to the perceptual features of a sketch and
gives equal weight to each feature. We, therefore, back Qetch
with a matching algorithm that uses curvature [29, 19] to seg-
ment the sketch and the data, and matches segments rather
than time slices. Our algorithm tolerates sketching errors: it
globally rescales the sketch to fit a sequence of time series
segments before matching. It also locally rescales each sketch
segment to better fit a data segment before computing shape
differences. The simple design of Qetch’s algorithm allows it
to be easily extended to handle regular expressions as well as
multiple sketches for querying different time-aligned series.

RELATED WORKS
Our work draws from time series research on UI design, query
specification techniques and query languages, as well as match-
ing algorithms from the database community. We describe
these prior works and how they influence or differ from Qetch.

Time Series Query Specification
Qetch allows users to query time series data with free-
form sketches on an empty canvas. We broadly classify
prior query specification techniques into sketch-less query-
ing and constrained sketching where users have to (a) overlay
sketches over visualizations of time series data, (b) draw shape-
restricted query segments, or (c) annotate sketches with am-
plitude or time scales. As we explain later, such constrained
sketching is usually an artifact of the underlying matching
algorithm that requires a specification of time or amplitude
ranges. Motivated by user-experience, Qetch’s interface and
matching algorithm supports free-form sketching without con-
straints.

Sketch-Less Querying
TimeSearcher introduced timeboxes for querying time series
data [17, 16, 18]. Timeboxes are rectangular widgets drawn
directly on a two-dimensional display of temporal data. Time-
Searcher retrieves all time series that pass through one or more
timeboxes. Timeboxes are powerful value-based querying
widgets: for example, one can easily look for stocks whose
prices ranged from $1 to $10 in 2016. It is not as easy, however,
to specify a shape-based query such as a head-and-shoulders
pattern with timeboxes.

Constrained Sketching
Overlays. QuerySketch [41] allows users to draw their search
pattern on the same display as the data. This design choice of
overlaying the query canvas over the data visualization meant
that users had to sketch their patterns with little scaling er-
rors and with pre-defined time and amplitude ranges — the
time and amplitude ranges of the underlying visualized data.
This assumption allows the use of standard matching algo-
rithms such as Euclidean distance to find time series similar
to the query. Other works have since built on QuerySketch’s
use of overlays, namely QueryLines [40] and most recently
RINSE [44]. Holz and Feiner utilize overlays to derive a
user’s tolerance of spatial deviations from a sketch by mea-
suring point-by-point distances between the sketch and the
underlying region [20].

Shape-restricted Sketches. Keogh & Smyth propose a prob-
abilistic pattern matching technique that represents the un-
derlying time series data as segments of piecewise straight
lines [26]. They state that there is “considerable psychological
evidence ... that the human visual system segments smooth
curves into piecewise straight lines” [26]. Given the underly-
ing data representation, they limit query sketches to straight
line segments as well. By modifying how users sketch, users
can never fully express their intended query. They, however,
become more tolerant of matches that fit the shape-restricted
sketch even if they do not match their intention. Research
on human visual perception does suggest that users mentally
decompose complex shapes, such as time series data, into
visually salient parts such as peaks, troughs as well as upward-
and downward- sloping lines [29, 19, 42] and do so using
curvature [19, 29]. Based on this research, Qetch allows users
to freely sketch their query without any shape restrictions but
uses curve derivatives to decompose the data and sketch into
visually salient segments. The matching algorithm weighs the
goodness of a match by how well each of the query and data
segments match.

Annotated Sketches. Keogh & Smyth also allow users to
visually annotate their segmented linear sketches with hori-
zontal and vertical lines that express the degree of elasticity
in amplitude or time that the matching algorithm should al-
low [26]. Holz & Feiner also allow visual annotations in the
form of circles on peaks and troughs. The area of the circle
expresses the degree of spatial deviation from the sketch the
matching algorithm should allow [20]. Unlike these works,
Qetch utilizes time or value annotations to tighten a query
rather than to relax it. Like Qetch, TimeSketch [9] allows
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users to sketch patterns on an empty canvas. Users, however,
have to explicitly specify the time scale of the sketch.

Query Languages and Regular Expressions
Agrawal et al. first propose the use of a shape definition lan-
guage (SDL) to describe patterns over time series data [1].
SDL expresses shapes with keywords like up, and its steeper
form Up, down, stable, etc. and concatenation, repetition and
choice operators. SDL is thus a very powerful language but it
suffers from a wide gulf of execution as one has to transform
their mental image of a shape into a series of keywords and op-
erators. Patterns is a commercial tool that also uses a language
of pattern-keywords similar to SDL and supports regular ex-
pressions [32]. Qetch works directly with the sketch allowing
users to specify repetition and negation regex operators in the
form of sketch annotations.

Matching Algorithms
Several surveys compare methods for querying and mining
time series data and evaluate their performance on different
benchmarks [8, 9, 12, 25]. Ding et al. conclude in their sur-
vey that there is no distance measure that is systematically
better than the 40-year-old dynamic time warping (DTW) mea-
sure [8]. Moreover, the relatively simple and straightforward
distance measure, Euclidean distance (ED) is competitive with
DTW and other complex approaches, especially as the size of
the data set grows [8]. Thus, we focus only on DTW and ED
as benchmarking studies reveal that they not only outperform
other algorithms when matching one time series to another [8,
25, 12, 2], but they also show higher subjective accuracy in
ranking time series similar to a sketch [9]. Given the plethora
of matching algorithms, we provide detailed descriptions of
different algorithms in a separate appendix2 as well as dive
deeper into DTW and ED. We briefly discuss the variants of
DTW and ED that we use for query-by-sketching.

Both ED & DTW require a query length. With a sliding win-
dow size equal to the query length and a step size of 1% of the
query length, we extract multiple regions from a time series to
compare against the sketch. We scale the sketch to be equal
in length [43, 13] and height to each region. We then shift
the query such that its mean value is aligned with the region’s
mean value [43].
Euclidean Distance (ED). ED is the sum of squared differ-
ences of values between the query and the region at k sampled
points. ED is easy to implement and has linear complexity.
However, since distances are computed point-wise and the
mapping of a query point to a data point is fixed, ED is sensi-
tive to noise and local time misalignments.
Dynamic Time Warping (DTW). DTW overcomes ED’s in-
ability to handle local time misalignments (or warps) by locally
stretching or compressing a time series to better match it with
another. DTW takes as a parameter a warping window size
that limits how much the query can be temporally stretched or
compressed. In our experiments we set an unlimited warping
window size. Some DTW variants minimize the cost of mis-
matched end-points, we do not implement this feature as we

2The appendix is part of the auxiliary material published with this
work.

compare the sketch against several slightly-shifted regions of
a data set to find the best match. Also, we find that users care
about all perceptual features including those at the periphery
of a sketch. In our experiments, we find that additional nor-
malization, such as Z-normalization, beyond global rescaling
and offset shifting does not improve DTW’s precision. After
various experiments with different effectiveness settings for
DTW [33], we find that DTW with time and amplitude scaling,
offset shifting and an unlimited warping window performs best
for sketch to time-series matching. These settings may not
work well for time-series to time-series matching.

QUERYING TIME SERIES DATA WITH QETCH
Querying time series data with Qetch involves three steps: (1)
Loading, (2) Sketching, and (3) Refining. Users typically iter-
ate over steps two and three. Qetch’s novel querying features
include (1) annotating sketches with regular expressions to
construct more complex or periodic queries, and (2) specifying
multiple queries across data sets. Consider the following use
case scenarios:
Example 1: A quantitative analyst in training, Joe, is examin-
ing the effectiveness of a head-and-shoulders pattern, , at
predicting reversals in stock price trends. He has a database of
historical stock prices for different companies.
Example 2: A physician, Liz, is looking for pacemaker patients
who suffered from an arrhythmia by searching a database of
electrocardiograms for not-normal rhythms.
Example 3: An economist, Bob, is looking for instances where
unemployment was correlated with a decline in the equity of
insurance companies.

Step 1. Loading. Joe first loads one or a group of stock price
time series into Qetch. He needs to specify the name of the
value y-axis (e.g. stock price) and the time or date format
of the time x-axis. Qetch immediately stores the data into
a relational database and starts a background pre-processing
thread that iteratively segments and smooths the data.
Segmentation. To segment a time series, Qetch uses changes
in curve monotonicity to determine the end of one segment
and hence the beginning of a new segment. Segments with
height less than a configurable, data-specific threshold are
merged with adjacent segments. This allows users to eliminate
micro-patterns, such as those caused by precision fluctuations
in measurements from ECG leads, from consideration by the
matching algorithm.
Smoothing. For most time series, smoothing is necessary to
capture the key patterns of the data, while leaving out noise.
Qetch uses the exponential moving average3 to smooth data.
At every iteration, the data is progressively smoothed until
the number of segments is reduced by a configurable constant
factor from the last iteration (the default setting is 0.1). A slider
allows users to see the effect of several smoothing iterations
applied to the data. Users can also zoom into different regions
of the time series (See Figure 2).

3Compared to the simple moving average, which equally weighs
the last m observations, the exponential moving average weighs
observations closer to a point more than observations further away;
this makes it better suited for averaging values arriving consecutively
in time and for capturing peaks and troughs.
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Users choose a time series data 
set and Qetch visualizes it.

After loading a new data set, Qetch 
processes the data for interactive querying

The blue line is a smoothed data set: users can 
change the degree of smoothing visualized.

Qetch overlays selected match results color-coded by their 
goodness: green represents a good match, yellow is satisfactory 
and red is poor. Show all will highlight all matches on the 
visualization. The visualization and the results table are linked. 

The bottom visualization allows users to 
zoom in or out of certain regions of the data

Users can annotate 
sketches with time and 
amplitude scales and 
offsets as well as regex 
operators

Qetch matches the sketch to a 
library of predefined queries or 
mathematical functions. Qetch 
suggests the closest 
predefined query.  

Users sketch their intended 
query directly on the canvas

Figure 2. Qetch’s user interface.

Figure 3. Regular Expressions with Qetch: Liz searches for abnormal
rhythms in a patient’s ECG with help of a not operator. Qetch’s top
result coincides with a premature ventricular contraction.

Step 2. Sketching. Joe then freely sketches the head-and-
shoulders pattern in the empty canvas below the line chart
visualization. The canvas has no time or amplitude scales
and is independent of the current scales of the visualization.
Sketches are slightly smoothed while drawing to remove hand
jitter: the sketch is interpolated to create a modifiable Bézier
curve. Curve handles can be moved, added or removed. Qetch
then executes the matching algorithm and returns an ordered
set of all matches for the sketch in the results pane. Matches
are color-coded: green for good matches (low distance mea-
sures), yellow for fair matches and red for poor matches (high
distance measures). Qetch visualizes all the matches over the
line chart at the selected smooth iteration. The results table
and the line chart visualization are linked such that selecting a
match from the table highlights the match on the line chart and
selecting a match on the visualization highlights it in the table.
Joe can sort results by their distance, time span and degree of
smoothing.

Step 3. Refining. Joe can further refine his query by anno-
tating it with query length, amplitude range, time offset, or
value offset. Qetch also maintains a library of mathematical
functions (e.g. exponential growth curve y = at), well-known
chart patterns and saved sketches. In addition to matching a
user’s sketch to the data set, Qetch also matches the sketch
to this library and notifies the user of matches found. Joe can
preview and select as well as modify patterns from the library
to replace his sketch with.

Figure 4. Querying multiple time series with Qetch: Bob simultane-
ously queries time-aligned insurance equity, and unemployment data
sets to find periods where a rise in unemployment coincided with a fall
in equity. The relative positioning of the sketches determines whether
the matches should overlap or occur in a certain order.

Regular Expressions over Sketches
Liz, the physician, can use Qetch to find arrhythmias in a data
set of patient ECGs. In Figure 3, Liz loads the ECG of a pace-
maker patient, she sketches a normal heart rhythm and applies
the not operator over the sketch. Qetch finds a match within
the ECG, which indicates a premature ventricular contraction.
Currently, Qetch only supports three regular expression opera-
tors: repeat, repeat exactly n times and not. Users can apply
repeat operators to one or or more paired segments of a sketch
— a pair of consecutive segments captures a trough or a peak.
Users can only apply the not operator once to the entire sketch.
While users can nest repeat operators within a not operator
and within other repeat operators, they cannot nest a not op-
erator within any operator. By applying regular expression
operators directly on the sketch, we preserve the user’s mental
model of the sketch as the primary query specification mode
in Qetch.

Relative Positioning for Multiple Time Series Queries
Bob, the economist, can search for patterns across different
time-aligned data sets. In Figure 4, Bob, finds a correlation
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between a drop in the equity of insurance companies and an
increase in unemployment. Bob controls the order of patterns
by the relative positioning of sketches along the time axis. In
Figure 4, the sketches overlap on the time axis, thus Qetch
will return matches that also overlap in time. Users can specify
queries over more than two data sets. We demonstrate through
a user study that relative positioning is more effective than
directly specifying simplified order constraints of the form
query C before query A, query B after query C, etc.

THE QETCH MATCHING ALGORITHM
Selecting a match candidate.
Recall that Qetch segments and smooths time series data. A
single time series is represented by multiple time series of
increasing degrees of smoothing. Qetch finds matches in each
smoothed representation. Each data segment is a curve with
either positive or negative derivatives. Similarly, a sketch is
segmented into k curves of positive or negative derivatives.
We consider a segment whose height is less than 1% of the
overall sketch height to be noise, and not a key perceptual
feature. Hence, Qetch merges these segments with an adjacent
segment.

Without query length, we rely on the number of query seg-
ments to determine the number of data segments we consider
for a match. Qetch’s algorithm slides down the data, one seg-
ment at a time, selecting k segments to match to the sketch.
If the data has S smoothed representations and at most D
segments, then the number of matching operations is O(S ·D).

Unlike Qetch, other matching algorithms like ED or DTW
have to use a sliding window equal to a user-specified query
length to select match candidates. Configuring the step size
of the sliding window can be tricky. A small step size can be
detrimental to performance as many matches are computed for
slightly shifted windows of similar, overlapping time series.
On the other hand, a large step size can skip over entire or
partial potential matches leading to poor results.

Global non-uniform scaling.
A query in Qetch is a scale-less sketch. Consider a sketch of an
upward sloping straight line at a 45°angle. One can visualize
any upward sloping line segment of a time series to appear to
rise at a 45°angle by adjusting the time-scale and amplitude
scale accordingly. With such a visualization, the time series is
a perfect match for the sketch. This is a key intuition behind
Qetch’s matching algorithm: the closest match to a sketch
devoid of scale is the one that fits the most after we rescale
the sketch to fit the match’s scales. We compute the following
global rescaling factors (Gx,Gy) to rescale the sketch, Q, to a
match candidate C (Figure 5(a)):

Gx = width(C) /width(Q) Gy = height(C) / height(Q)

Computing the distance measure.
If humans were precise sketch artists then a standard distance
measure such as the Euclidean or Manhattan distance would
suffice to measure how close a sketch is to a query. Humans,
however, are prone to exaggerate features. For example, a
sketch of a head-and-shoulders pattern may exaggerate the
relative height difference between the head and the shoulders.

Candidate 
region C

(a) Global non-uniform scaling (b) Local segment rescaling

Distortion 
Error

G
y

Gx

Shape 
Error

R y
(q

3,
c 3

 )

R y
(q

4,
c 4

 )

Rx(q4,c4 )Rx(q3,c3 )
q3 q4q2q1

c3 c4c2c1

Query 
sketch Q 

Figure 5. Global non-uniform scaling and local segment rescaling

These local distortion errors need to be accounted for before
measuring the distance between a data segment and a query
segment.

Local Distortion Errors. Given a match candidate C with k
segments {c1, ..., ck} and a query Q with k segments {q1, ..., qk}.
A local distortion error (LDE) is a measure of how much
additional rescaling is required to fit a sketch segment qi to a
data segment ci (Figure 5).

Rx(qi, ci) =
width(ci)

Gx ∗ width(qi)
Ry(qi, ci) =

height(ci)
Gy ∗ height(qi)

We obtain the local distortion error (or distortion distance)
from the above rescaling factors (Rx,Ry) as follows:

LDE(qi, ci) = log(Rx(qi, ci))2 + log(Ry(qi, ci))2

A sketch segment that is a factor of four wider than a data
segment is just as bad as a sketch segment that is a quarter
of the width of a data segment. Thus, we log-normalize the
factors and square the result to obtain an appropriate positive
error-distance measure. If no local rescaling is required, then
the local distortion error is zero as expected.

Shape Errors. The difference in shape (or shape error SE)
between a data and query segment is the Manhattan distance
between the two segments, after locally distorting the query
segment (Figure 5(b)). Other distance measures (e.g. ED) can
also be used here. The query and data are sampled at a fixed
time interval (e.g. every 1ms) to produce Ni data points.

SE(qi, ci) =
1
Ni

Ni∑
j=1

∣∣∣∣∣∣Gy ∗ Ry(qi, ci) ∗ qi[ j].y − ci[ j].y
height(C)

∣∣∣∣∣∣
Note that data segments can have different lengths. Since
longer data segments have more data points, and thus more
differences, we normalize the shape error of each segment by
dividing it with the number of data points in it to ensure that
longer segments do not overwhelm the overall distance mea-
sure. Without such a normalization, smaller micro-patterns
may be preferred to larger patterns simply because they have
less data points which contribute to fewer differences in the
distance measurement. Also, since data segments with larger
amplitude variations contribute to larger absolute differences,
we normalize each difference by the height of the candidate
match. Without such a normalization, Qetch will again pre-
fer patterns of smaller amplitude variations. Thus, the Qetch
distance between a query Q and a match candidate C is

Dist(Q,C) =

k∑
i=1

LDE(qi, ci) + SE(qi, ci)
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We plan to study how to use multiplicative factors to add more
weight to distortion or shape errors. Qetch returns a ranked list
of matches from all smoothed series ordered by their distance
from the sketch. Matches that fall above a configured distance
threshold are eliminated. Only the closest match from matches
that overlap across multiple smoothed series is returned. A
complexity analysis of Qetch can be found in the appendix
within the auxiliary material.

Evaluating Regular Expressions
Curve segmentation not only enables the efficient selection
and matching of candidate matches to user sketches, it also
enables the formulation of expressive time series queries with
regular expressions. Qetch evaluates regular expressions with
the help of a finite-state machine. Each segment in the sketch
represents a state in the machine. A sequence of consecutive
segments in the sketch is represented by a sequence of con-
nected states. A repeat operator simply adds more transitions
to the machine.

↻

Qetch begins at the start state and finds all good partial
matches for the starting segment (i.e. matches with a dis-
tance measure below a certain threshold). At the next state,
Qetch filters the partial matches from the previous state keep-
ing only those that can be extended to include the current
state’s segment. Thus, all possible transitions from a state
are explored as long as the matches can be extended. If no
good matches are found from extending the partial matches,
no further exploration occurs. At the terminal state, all good
matches found so far are returned as results. When no partial
matches are circulating through the machine, the search ends.
Currently, the not operator can only be applied to the entire
sketch. After finding all matches M to the sketch that have
a distance score below a given pre-configured threshold, the
matches M are eliminated from the time series and the remain-
ing contiguous segments are returned as results. Results with
larger distances from the sketch are ranked higher.

EVALUATION

A User Study of Qetch’s Interaction Features
To evaluate Qetch’s user interface, we conducted a within-
subjects comparative user study of Qetch’s novel time se-
ries querying features: (i) regular expressions for querying
repeated patterns and for anomaly detection versus no reg-
ular expressions and (ii) relative positioning of sketches for
querying across multiple data sets verses specifying order
constraints over sketches. Our goal was to observe query
completion times on assigned querying tasks to objectively
determine whether Qetch’s features improved querying. We
also elicited user preferences for the degree of smoothing for
which queries should be evaluated and results presented.

Participants & Methods
We recruited 20 university students and researchers (10 male,
10 female; 17 students, 3 researchers) to evaluate the effec-
tiveness of Qetch’s time series querying features. A pre-study
survey showed that our subjects had a range of familiarity

and expertise with time series data as indicated on a 5-point
Likert scale of self-reported familiarity (µ = 2.8, ). Six
of our subjects have also used tools to query or explore time
series data (e.g. Google Analytics, matplotlib, Google Charts,
Python, STATA, etc.). Our participants were students of, or
researchers within different majors including Neuroscience,
Economics, Biology, Physics, and Computer Science. None
of our subjects had used Qetch prior to the study.

We first presented a 10-minute scripted Qetch tutorial. The
tutorial described what are time series data and line chart
visualizations and how to (i) load data sets, (ii) query with
sketches, (iii) interpret results, and (iv) use advanced features
such as regular expressions and querying across multiple data
sets. We then allowed the participants to play with the tool for
10 minutes. The users mostly directed this play-time, but we
asked users to attempt at least two sample query tasks. In this
play time we answered any questions they had about the tool.

We then asked the subjects to attempt a series of querying tasks
within 600 seconds (described below) on synthesized data
sets with and without a particular Qetch feature. Each task
involved sketching a given pattern in Qetch with the help of a
mouse with a specific feature turned on or off. We opted for
mouse input rather than pen-based input to ensure our results
generalize; many users may not have used pen-based input
devices nor have easy access to them. We chose to synthesize
data sets for each task in the comparative user-study to ensure
users can easily verify whether they successfully completed a
task or not and to ensure that tasks performed with or without
a Qetch feature at a certain difficulty level are equivalent. The
synthesized data sets also eliminated a user’s familiarity with
a particular domain from being a confounding variable in our
study. Our choice of whether the user attempted the tasks with
Qetch’s feature or not was randomized as well as our data set
choices. This counterbalancing minimized learning effects.

Task set A: Search for repeated patterns. The users looked
for a pattern that repeated 4 times, or its vertically flipped
pattern, , on a vertically flipped data set, with or without
the use of the repeat regex operator. In a harder variant, users
looked for six repetitions of or . To describe the tasks to
the users, we provided printed query sketches.
Task set B: Detect an anomaly. The users looked for an
anomalous region, (e.g. , ) within a data set of recur-
ring peaks ( ), with or without the use of the not operator.
Users did not know the exact shape nor the position of the
anomaly, which varied from one task to the other.
Task set C: Query across multiple data sets. The users looked
for three patterns across three data sets. We chose a non-linear
ordering of the patterns to ensure equal difficulty for specify-
ing the query by relative positioning or ordering constraints.
To describe the task to the users, we provided a printout of
the query result as visualized by Qetch rather than a sketch
of the query so as not to favorably bias query specification
with relative positioning as users might copy the order in the
sketches directly.

Comparative User Study Results
Figure 6 summarizes the results of the user study for all task
sets. Notice that using Qetch’s features, regular expression
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(c) Task completion times when searching for patterns across multiple data sets with 
relative positioning of sketches vs. specifying order constraints with keywords

(b) Task completion times when searching for an anomaly with and without the not 
regex operator

(a) Task completion times when searching for repeated patterns with and without the 
repeat regex operator

Figure 6. Black bars indicate mean task completion times. The shaded
regions represent 95% CIs. Dots, representing each user’s task comple-
tion time, are vertically jittered to minimize occlusion. The cross repre-
sents a user who could not complete that task within 10 minutes. Hollow
dots indicate tasks completed incorrectly.

operators and relative positioning of sketches for querying
multiple data sets, leads to faster mean task completion times
regardless of task difficulty.

To evaluate the effectiveness of the repeat operator, we per-
formed a two-way repeated measures ANOVA with task dif-
ficulty and operator-use as independent factors. We log-
transformed the completion times to better approximate a
normal distribution4. We found a significant interaction effect
of operator-use and task difficulty, F1,19 = 11.3, p = .003.
We found the following simple main effects: for both easy
and hard tasks, there was a significant difference in com-
pletion times between using and not using the repeat oper-
ator: F1,19 = 20.5, p < .0005, F1,19 = 63.7, p < .0005.
Without the repeat operator, there was a significant differ-
ence in task completion times between easy and hard tasks
F1,19 = 13.6, p = .002. When using the repeat operator how-
ever, there was no significant difference in completion times
between the easy and hard tasks as expected: in both cases
the user sketches a relatively simple pattern once and sets the
number of repetitions in the repeat operator.

To evaluate the not operator, we performed a one-way repeated
measures ANOVA with operator-use as an independent factor.
We log-transformed the completion times. We observe a sta-
tistically significant effect of using the not operator on task
completion times, F1,18 = 32.5, p < .0005 5. Without access
to the not operator, users resorted to different tactics to find
the anomaly including (a) visually scanning the entire time
series at different zoom levels to manually find the anomaly,
or (b) sketching the recurring pattern (a peak) and sorting the
results by distance from sketch in descending order.

4Since only two levels per factor exist, we assume perfect spherecity.
5We dropped a user’s completion times as s/he timed out when trying
to find the anomaly without the not operator.

Finally, to evaluate the effectiveness of relative positioning
of sketches as a technique for querying multiple data sets
versus the explicit specification of order constraints with key-
words on sketches, we performed a one-way repeated mea-
sures ANOVA with technique used as an independent factor.
We also log-transformed the completion times and we assume
perfect spherecity. We found a significant effect of technique
used, F1,19 = 68.6, p < .0005. Figure 6(c) illustrates that
the difference in performance is largely explained by the time
required to write ordering constraints of the form {Q3 before
Q1, Q1 before Q2, ...}: the mean time to write constraints
after providing the query sketches for each data set was 71 sec-
onds (the total mean time to complete the task with ordering
constraints was 115 seconds), the mean time to query with rel-
ative positioning, however, was only 30 seconds (≈ 115 − 71
seconds). In a post-study questionnaire, users were asked
which method did they prefer for specifying queries over mul-
tiple data sets. 18 users of the 20 users preferred relative posi-
tioning over the specification of order constraints. Some users
elaborated on their preferences: ‘constraints are not intuitive,
hard to understand’, ‘It [would be] hard to write constraints
for more than 4 queries’, ‘Drawing is much easier.’, ‘[specifi-
cation with order constraints] is a bit more complex, but not
complicated’.

Smoothing Preferences
For each of the eight queries described in Figure 1, we pre-
sented the 20 participants with a query sketch, and the data set
with the result highlighted in a different color. For fine-grained
preference elicitation and comparisons across data sets, we
increased the number of smoothing attempts per iteration to
ensure that each data set had roughly twenty smoothed series
with the exception of the insurance equity data set, which did
not have enough data points to allow more than five smoothing
iterations. We then asked users to slide three sliders to indicate
the minimum, preferred and maximum degree of smoothing
of the data set and the highlighted result. Figure 7 summarizes
the results. We observe that for most queries, users want a
minimum non-zero degree of smoothing to exist. We also
observe that users set a maximum degree of smoothing well
below 50% of the highest possible degree of smoothing sup-
ported for a particular data set for most queries. The preferred
degree of smoothing is somewhere in between the minimum
and the maximum. We find that Qetch’s smoothing choices
are within a 95% confidence interval of the mean preferred
smoothing degree for six of the eight queries. This affirms that
presenting users with results smoothed at the level at which
they best match the query sketch is an effective presentation
choice. Note that for the rounded-bottom query on the
insurance equity data set, the highest degree of smoothing
supported is only five iterations and 65% of the users chose
a smoothing level of one as their preferred smoothing level
and 35% chose no smoothing as Qetch chose. For the sharp
dip query , we contend that Qetch still chooses a degree of
smoothing that is roughly within one standard deviation of the
preferred mean smoothing degree selected by users.

Qualitative Evaluation of the Qetch Interface
We also conducted a post-study questionnaire to gain some
qualitative feedback on Qetch. Overall, users found Qetch
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Figure 7. For each query, we present 95% CI bars for the minimum,
preferred, and maximum mean smoothing degrees as selected by users.
The triangle glyph marks Qetch’s degree of smoothing.

easy to use (µ = 4.1, ). They found query-by-sketching an
intuitive and effective paradigm for querying time series data
(µ = 4.2, ), with only two users wishing for more formu-
laic methods for specifying queries. Most users found Qetch
interactive and responsive enough to freely correct sketching
errors (µ = 4, ). One user commented that the ‘NOT was
a little bit slow, it freezed [sic] for one second’. In general,
users found the table visualization and the ordering of results
by different attributes effective (µ = 4.6, ; µ = 4.7, ).
Users responded to a general feedback question on Qetch.
One user stated “I wish I was able to zoom into my drawings
and correct the mistakes rather than start over.” Three other
users expressed a similar interest in editing shape vectors or
drawing sketches with multiple connected segments instead of
a ‘single click and hold’ interaction. Four users expressed a
desire for a better input device such as a ‘good stylus’, ‘sketch-
pad’, ‘touchscreen’ or a ‘better mouse’. One user stated that
the not operator was only effective ‘when the pattern is ex-
tremely clear, otherwise is not useful at all’, we assume the
user was referring to the anomalous pattern being clearly dis-
tinguishable from the underlying data set. While two users
found Qetch sensitive — ‘[Qetch ] gets confused very easily
if the drawing is not accurate enough’, ‘the tool is powerful
enough to find the anomalies, but the sketch has to be precise’
— two other users found Qetch forgiving: ‘I realized that the
program is forgiving if it [the sketch] is not exact, which makes
it easier’, ‘I like how it automatically completed & identified
shapes and also ignored mistakes that were obvious’.

We observed during our experiments, that users occasionally
change the data visualization scale in order to better assess
Qetch’s proposed matches to their scale-less sketch. We plan
to narrow this gulf of evaluation in the future by automatically
rescaling visualized results to better match the sketch. Note
that the time spent comparing matches at a scale different from
the sketch is often negligible relative to the time that would
have been spent specifying queries of multiple sizes especially
if the user has no set query size in mind.

Qetch’s Performance on Search Tasks
We evaluate Qetch’s performance on two types of search tasks:
(1) targeted search, where users search the data set for a spe-
cific region, and (2) exploratory search where users search for
several regions in the data set that match their sketch.

Targeted Search
We compare the precision of Qetch to both DTW and ED. In
this experiment, the query length determined the size of the
sliding window for both DTW and ED. The step size was set
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Figure 8. Bars mark factor improvements in precision@5 of Qetch, and
ED over DTW. Bars at the reference line of 1 indicate no improvement
in precision. We see that Qetch provides at least a factor of two improve-
ment in precision@5 over DTW on the head-and-shoulders query. For
reference, each bar is additionally labeled with the precision@5 value
of the different algorithms and DTW’s precision@5 value is listed at the
top of the figure.

to 1% of the query length. Further experimental setup details
such the number of data points and segments per data set,
the number of sketches per query, and other data and query
statistics can be found in the appendix.

In our initial crowd study, crowd workers provided sketches
that best represented a marked reference region in eight differ-
ent data sets (See Figure 1). We evaluated how often each algo-
rithm placed this reference region in its top 5 results when the
sketch was used to query the time series. Let S i be the set of
sketches for one of the eight reference regions (i = 1, ..., 8). Let
ranki(s) be the rank of the reference region when a sketch s is
used to query the reference region’s data set. Precision@5(S i)
is defined as:

1
|S i|

∑
s∈S i

{
1, ranki(s) ≤ 5
0, otherwise

Precision@5 ranges from 0 to 1, with higher precision val-
ues indicating that more sketches caused the target reference
region to appear in the top 5 results for a given matching
algorithm.

In Figure 8, we find that Qetch outperforms DTW and ED
with a few exceptions. For the rounded-bottom ( ) pattern,
there are many regions in the data that can match a simple
trough pattern, and without query length, Qetch cannot filter
out these matches as well as the other algorithms. A similar
problem occurs with the cup-with-handle ( ) query. Note that
the falling-peaks ( ) pattern queries the network traffic data
set which is mostly a periodic data set of five weekdays of high
traffic peaks and two weekends of low traffic peaks: Qetch
often matches the falling-peaks sketch to four high weekday
peaks followed by two low weekend peaks due to the relatively
small distortion errors caused by the three middle peaks. We
also computed the mean reciprocal rank [6] and the factor
improvement of Qetch over DTW and ED are equivalent to
those for precision@5. Hence, we do not include those results
for brevity.

Exploratory Search
We recruited 16 university students, faculty, and staff (8 male,
8 female; 4 students, 9 researchers, 3 staff). Their background
was of a similar make-up to the previous study. None of our
subjects had used Qetch prior to the study. We administered
the same training protocol as before. We asked users to per-
form the following two query tasks: (1) A pattern lasting
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Figure 9. Each line represents the normalized discounted cumulative
gain (NDCG) for each user query for Qetch and DTW. The black bars
mark the average NDCG. For queries 1 and 2, we provide the median re-
sult length of Qetch. Details of the user-defined queries and their Qetch
results can be found in the appendix.

roughly 20 seconds on the MIT-BIH heart rate series 1 [31],
and (2) A pattern lasting roughly 20 days on the mean
daily temperature in Saugeen river [15]. We then asked users
to freely sketch three queries of their choice on the follow-
ing data sets: Alaska Air Group’s (ALK) stock prices, (2)
Anadarko Petroleum Corporation’s (APC) stock prices and (3)
the MIT-BIH heart rate series 3 [31]. Users were allowed as
many attempts as they wished before they finalized their three
free queries. Further details of the data sets and the range of
user-specified queries can be found in the appendix.

For each user query, we presented the top-10 results of DTW
and Qetch. To minimize user fatigue, we did not include ED
in our comparison. The presentation of the top-10 results for
each algorithm was randomized across users. For Qetch, we
presented the smoothed overlay in addition to the underlying
data region for each query result. Note that DTW does not
utilize smoothing and hence cannot benefit from this Qetch
feature.

The users rated the relevance of each result on a 5-point scale
ranging from bad (1) to perfect (5). We evaluated the ef-
fectiveness of DTW and Qetch with the popular normalized
discounted cumulative gain (NDCG) measure [7, 21]. The
discounted cumulative gain (DCG) is a measure of the use-
fulness, or gain, from examining a region in the time series.
The gain of each ranked result is its user-rating weighted or
discounted by its rank in the overall result and the DCG at
rank i is the aggregate of all discounted gains of each result
up to result i. The NDCG normalizes the DCG at each rank
with the ideal DCG value assuming a perfect ranking. We
determine the ideal DCG by aggregating the results of both
DTW and Qetch for each user query and ordering the results
from highest rated to lowest rated. NDCG ranges from 0 indi-
cating a poor ranking relative to the ideal ranking of results to
1 indicating a perfect ranking. Figure 9 provides the NDCG
for each user query and the average NDCG for each of the
query types and algorithms. Qetch noticeably outperforms
DTW across all queries.

Users attributed Qetch’s superior performance to two as-
pects. First, Qetch’s smoothing choices and its presentation of
smoothed results. One may assume that smoothing is indepen-
dent of the matching algorithm and the querying interface; af-
ter all, one can apply smoothing post hoc to a region identified
as a match by DTW. This, however, is not trivial as it is diffi-
cult to determine the right degree of smoothing and smoothing
might in fact lead to a worse DTW distance measure. The care-

ful integration of smoothing into Qetch’s matching algorithm
and interface leads to its overall effectiveness. Second, Qetch
gives equal importance to each perceptual feature within a
sketch. As two users expressed: ‘Tool A [Qetch ] was better
at finding smaller features of the query’, ‘When tool B [DTW ]
is used, it tends to look at the bigger picture and ignore minor
peaks [in the sketch]’.

LIMITATIONS AND FUTURE WORK
Rakthanmanon et al. state that “after an exhaustive literature
search of more than 800 papers, we are not aware of any
distance measure that has been shown to outperform DTW
by a statistically significant amount on reproducible experi-
ments” [39]. We agree with this statement; Qetch does not
outperform DTW in standard time-series benchmarking tests.
Qetch’s distance measure is a poor choice for measuring the
distance of one time-series region to another. Thus, it is also a
poor choice for other time-series applications such as motif-
discovery (finding recurring patterns in a time series). It is,
however, suitable for the specific use-case scenario of match-
ing a rough, hand-drawn, scale-less sketch to a time series.
DTW, however, and its well-studied variants were not de-
signed for this use-case. We believe that by re-examining
query-by-sketching, we open up venues for further research
into matching algorithms.

For the small to medium scale time series we studied, Qetch
provides interactive performance with high precision. A com-
mon finding on large-scale data sets (millions to trillions of
data points), is that differences in accuracy/precision between
time-series matching algorithms diminish [8]. With larger data
sets, the opportunity to find good matches with all three algo-
rithms increases, which leads to good precision@k in spite of
the matching algorithm used. We argue that for many users
who work with relatively small data sets, slightly worse preci-
sion can be detrimental to the overall user-experience and we
should strive to build interfaces that work well for data sets of
all sizes. We plan to explore techniques to improve Qetch’s
scalability by exploiting the inherently embarrassingly par-
allel nature of searching across the multiple smoothed and
partitioned series and by rapidly pruning regions from consid-
eration by indexing the gradients of different segments.

CONCLUSION
In this paper, we introduced Qetch, a query-by-sketch tool
for time series data. We conducted a crowd study to learn
how humans sketch time series. We observed that participants
often preserve and exaggerate the visually salient features of
the reference time series they are sketching. We designed
Qetch’s matching algorithm to consider and tolerate such
distortions. As our evaluation demonstrates, Qetch’s sketch-
centric design is powerful and expressive: through sketch
annotations, users can effectively construct complex regular-
expression queries and queries over multiple time-aligned
series. Qetch outperforms standard algorithms on targeted
and exploratory search tasks. Finally, we publicly release our
crowd-sourced data set of sketches and source code [34].
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