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ABSTRACT 
Model-driven policymaking for epidemic control is a challenging 
collaborative process. It begins when a team of public-health of-
cials, epidemiologists, and economists construct a reasonably pre-
dictive disease model representative of the team’s region of interest 
as a function of its unique socio-economic and demographic charac-
teristics. As the team considers possible interventions such as school 
closures, social distancing, vaccination drives, etc., they need to 
simultaneously model each intervention’s efect on disease spread 
and economic cost. The team then engages in an extensive what-if 
analysis process to determine a cost-efective policy: a schedule of 
when, where and how extensively each intervention should be ap-
plied. This policymaking process is often an iterative and laborious 
programming-intensive efort where parameters are introduced 
and refned, model and intervention behaviors are modifed, and 
schedules changed. We have designed and developed EpiPolicy to 
support this efort. 

EpiPolicy is a policy aid and epidemic simulation tool that sup-
ports the mathematical specifcation and simulation of disease and 
population models, the programmatic specifcation of interventions 
and the declarative construction of schedules. EpiPolicy’s design 
supports a separation of concerns in the modeling process and 
enables capabilities such as the iterative and automatic exploration 
of intervention plans with Monte Carlo simulations to fnd a cost-
efective one. We report expert feedback on EpiPolicy. In general, 
experts found EpiPolicy’s capabilities powerful and transformative, 
when compared with their current practice. 

CCS CONCEPTS 
• Computing methodologies → Modeling and simulation; • 
Human-centered computing → Interactive systems and tools; 
Visualization systems and tools; Activity centered design. 
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1 INTRODUCTION 
“Tis the times’ plague, when madmen lead the blind.” 

William Shakespeare 

The COVID-19 pandemic has challenged policymakers across 
the world. Given an arsenal of interventions ranging from enforc-
ing mask-wearing, remote learning, telecommuting, and social dis-
tancing to vaccination drives, policymakers have to design and 
communicate intervention plans that reduce disease burden while 
maintaining a healthy economy. Understanding the efects of these 
plans on disease spread and economic costs can be a complex mod-
eling process often requiring diferent stakeholders such as public 
health ofcials, epidemiologists and economists working together 
to construct plans that impact millions of lives. 

Current epidemic simulators make it difcult to engage in the 
exploratory what-if analysis required to determine the cost-beneft 
tradeof of diferent possible intervention schedules. The reason 
for the difculty is that the disease model, the intervention policy 
and the many parameters characterizing both are often entangled 
in code implementations that grow in complexity as an epidemic 
evolves. Eventually, minor changes in policy or in the parameters 
describing a disease become difcult to implement and test. More-
over, new diseases require new models, which are often constructed 
with little code transfer from previous models. 

EpiPolicy is a novel epidemic-control policy planning and op-
timization tool. It provides high-level abstractions to support the 
specifcation of a disease model, a population’s demographic and 
mobility patterns, a set of possible interventions, and schedules 
of interventions that embody diferent policies. EpiPolicy allows 
stakeholders to engage in what-if analysis where modifcations to 
parameters or schedules do not require labor-intensive and error-
prone code rewrites. It provides a Monte Carlo simulation-based 
optimizer that explores thousands of possible intervention sched-
ules to suggest ones that reduce the overall health and economic 
burden. 

This paper describes our design process and the design of EpiPol-
icy. We analyze the key tasks that a policymaking team engages in 
when mitigating an epidemic from disease modeling to intervention 

894

https://doi.org/10.1145/3472749.3474794
https://doi.org/10.1145/3472749.3474794
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472749.3474794&domain=pdf&date_stamp=2021-10-12


t6. opti mize 

t7. refin~ 

@. audii) 

lt9 . communicate ! 

cl. m ismatch 

[tl . model 

[ t2. population I 

[ t3. intervention ) 

(t4. sched ule: 

I tS. what-if 

UIST ’21, October 10–14, 2021, Virtual Event, USA Tariq, Mannino, Anh, Bagge, Abouzied & Shasha 

planning to what-if analysis and policy optimization (Section 2.1). 
We have designed EpiPolicy with an understanding of the core 
challenges of model-driven policymaking (Section 2.2). EpiPolicy 
supports the iterative and evolving process of disease modeling and 
policymaking. We report the feedback of experts on EpiPolicy for a 
variety of diferent use-cases and in a more focused COVID-19 case 
study (Section 4). Policymaking is complex and driven by many 
factors such as socio-political ones that go beyond what any tool 
can realistically model. The main contribution of EpiPolicy is to 
support the policymaking process, rather than directly dictating 
policy, by enabling efective intervention planning discussions that 
are not hampered by code complexity, hidden parameters, or slow 
turnaround times when exploring alternatives. 

2 MOTIVATION & DESIGN PROCESS 
The motivation for EpiPolicy came from our conversations with 
epidemiologists and public health policy-makers, including one 
of the authors. As these experts worked to contain epidemics like 
COVID-19, they often explored several existing disease simulation 
models, customizing them for the unique socio-economic charac-
teristics of their administrative locales. They continuously updated 
their models and engaged in a time-consuming and laborious pro-
gramming efort to integrate the efects of diferent interventions 
under consideration. As their code monoliths became complex, un-
derstanding and isolating the impact of diferent parameter choices, 
changes to interventions schedules, etc., were not trivial. Moreover, 
as groups of experts (epidemiologists, statisticians and modelers, 
health economists, etc.) collaborated in policymaking, it became dif-
fcult to fully understand how the models or interventions behaved 
without accessing multiple diferent email threads, spreadsheets 
and shared documents that kept track of information such as how 
certain parameters were derived, why a specifc compartmental 
model was chosen, what exactly is the cumulative cost of an in-
tervention, etc. As these details were often contained deep within 
code, it was difcult to surface such information without relying 
on secondary channels. 

2.1 Task Analysis 
Given the apparent need for a tool that supports policymaking, we 
worked with diferent experts to identify the main tasks that our 
tool should support. 

Specify a reasonably predictive model (i.e., compart-
ment model) of how a disease spreads. 

Specify relevant baseline population characteris-
tics and dynamics such as relevant demographic data (e.g. 
percentage of seniors, adults and children, blue-collar vs. 
white-collar workers, etc.), movement across administrative 
regions and interaction within diferent facilities (e.g., homes, 
workplaces, schools). 

Specify individual and parameterizable interven-
tions in terms of cumulative efects on disease or population 
parameters as well as setup and running costs. 

Specify multiple intervention plans or schedules: where, 
when and how diferent interventions are applied. 

Evaluate and compare diferent schedules in terms 
of overall societal, health and economic costs (number of 

infections, deaths, hospitalizations, etc.) over time. This task 
underlies all forms of what-if analysis that policy-makers 
undertake when choosing which intervention schedule to 
implement. 

Search for alternative intervention schedules that are 
more cost-efective than current ones. 

Refne models, population dynamics, interventions, and 
schedules as an epidemic evolves or as more accurate repre-
sentations of the disease or interventions are found. 

Audit models and policies: Policy-makers and epidemi-
ologists need to trace model and intervention parameter 
settings to their sources, and to analyze the sensitivity of 
simulations on these parameters. 

Communicate model and intervention plan choices 
and simulation fndings to diferent team members to aid 
collaborative policymaking. 

2.2 Challenges 
In a rapid-prototyping design phase, we initially experimented with 
existing tools such as the Spatiotemporal Epidemiological Mod-
eler [18], and had conversations with epidemiologists and policy-
planning teams to better understand the limitations of existing tools 
and to understand the challenges they face. 

“All models are wrong, but some are useful" 
is an aphorism that both haunts and inspires epidemiologists and 
policy-makers. George Box, to whom this aphorism is attributed to, 
explains “for a model there is no need to ask the question ‘Is the 
model true?’. If ‘truth’ is to be the ‘whole truth’ the answer must be 
‘No’. The only question of interest is ‘Is the model illuminating and 
useful?’" [7] And so, with epidemic modeling for policy-planning, 
the concern is always how well a given model can inform a policy. 
Does it parsimoniously model the relevant phenomena? 

There are largely two options for epidemic modeling. Deter-
ministic models, which are described by well-behaved ordinary 
diferential equations (ODEs), express the transition rate of a pop-
ulation through diferent disease compartments. For example, the 
textbook "SEIR" model uses four compartments with transitions: 
susceptible (S) to exposed (E) to infected (I) to recovered (R). More 
detailed models may introduce compartments such as vaccinated, 
quarantined, etc. to model how the population moves through these 
compartments at every time step of a simulation. Figure 2 illustrates 
a deterministic model for COVID-19 that refects various severities 
of infection. 

By contrast, stochastic agent-based models describe the behav-
ior of multiple agents in a closed world with interactions between 
infected and susceptible agents carrying a certain probability of 
disease transmission. These stochastic models can be extremely 
expressive, but are difcult to scale ( simulations are often limited 
small populations of 100,000 agents or fewer) [40], and may be-
have inconsistently requiring multiple simulation runs to derive 
robust predictions. Critically, at large population scales (1 million 
individuals or more), the model outputs of deterministic and sto-
chastic models are often similar [3]. For these reasons, deterministic 
models are clear winners for modeling disease spread over large 
populations. 
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However, there is a mismatch between how deterministic 
equations model a disease and how interventions are spec-
ifed. Consider an intervention such as social distancing. In an 
agent-based model, this is expressed easily by agents limiting their 
interactions with other agents not in their immediate household. 
To model this in a compartment model such as SEIR, we must ex-
plicitly model diferent "facilities" (households, schools, congregant 
settings and so on). 

Difculty of parameterizing models & inter-
ventions. With a novel disease, many key parameters are simply 
unknown. For example, the exact case fatality rate of COVID-19 is 
still unclear with some countries reporting rates lower than 1% and 
others reporting rates higher than 9% (Mexico) [12]. COVID-19’s 
case fatality rate is the source of charged political and scientifc 
debate [9, 23]. Overall, in policy-planning, one can have 10s-100s 
of parameters: parameters that describe the disease progression 
and spread, the population’s demographic (e.g. % of seniors, % of 
essential workers, etc.), the population’s mobility, or parameters 
that control an intervention (e.g. available treatment doses, hospi-
tal capacity), or describe a schedule (e.g. start and end dates of a 
lockdown). In our observations, a modeling team can spend hour-
long meetings discussing parameter settings even for interventions 
where data is available. For example, how do we estimate hospital 
capacity? Do we include day-surgery wards? Private clinics? 

So how are parameters set? “Where possible ... parameters are 
estimated based on experimental or observational data, and where 
parameter values have gone unestimated, they are often set to 
plausible values or ranges based on analogous systems, statistical 
inference or expert opinion” [52]. 

Many tools remain oblivious to the complex process of setting pa-
rameters. This is manifested as (a) parameters being set as constants 
within code [39] or (b) parameters being described in secondary 
spreadsheets and shared documents. A computationally expensive 
post-hoc sensitivity analysis is then used to characterize the re-
sponse of a model to variations in parameter settings. This analysis 
serves to identify parameters that can be eliminated to yield simpler 
models, or to determine the range of possible outputs for an uncer-
tain parameter, or most importantly to determine the robustness of 
a model’s qualitative conclusions [38]. 

Lack of an Interactive Model Management 
System (MMS). Policy-planning for epidemic control is an active 
and continuous process, where models, parameters and plans are 
constantly refned. Moreover, as policy-makers engage in extensive 
what-if analysis — what if we build a feld hospital? what if we 
increase the rate of vaccination? what if mask-wearing compliance 
drops? what if we ease border restrictions? —, or explore diferent 
disease models — what if the disease is more infectious than the 
current assumed rate, what if young adults are less likely to social 
distance? — they generate multiple models, intervention plans and 
simulation results that they need to track and compare. 

Often a policymaking team will work on multiple independent 
tools such as (i) a modeling tool, (ii) a spreadsheet tool to track 
parameter values and intervention plans as well as to perform some 
preliminary data analysis, (iii) a visualization dashboard, and (iv) a 

presentation tool to communicate results. The absence of a central 
repository that maintains the results of all simulations, and allows 
the easy refnement of existing models hinders the efectiveness of 
such teams: simple simulation look-ups require searching across 
multiple data sources and tools. 

These delays have consequences. Liu and Heer observed that 
even a minuscule delay of 500ms in interactive data exploration 
incurred “signifcant costs, decreasing user activity and data set 
coverage" and that analysts “not only perform knowledge discovery 
at a higher rate under low latency conditions, their explorations 
are arguably more dynamic, engaging in sensemaking loops of 
observing, generalizing and hypothesizing [31]”. In our setting, 
depending on a team’s content management practices, looking 
up data such as an existing model’s outputs or simulating a new 
scenario may take minutes to hours. Such long turnaround times 
hinder a team’s ability to pose what-if questions or to qualitatively 
explore and evaluate the results of several simulated policy and 
disease scenarios. 

3 THE DESIGN OF EPIPOLICY 
We now describe the design of EpiPolicy that helps users with the 
tasks listed in Section 2.1, while tackling some of the challenges 
described in Section 2.2. We will frst begin by describing a core 
set of design principles that infuenced EpiPolicy’s overall design 
and then demonstrate EpiPolicy’s functionality with the help of a 
use-case scenario. 

3.1 Design Principles 

Providing high-level abstractions In our discus-
sion of challenge we described how the implemen-
tation of disease interventions is at odds with how disease models 
are often described with standard, deterministic ODEs. Recent La-
grangian approaches aim to better capture population heterogeneity 
and mobility within deterministic models. We base our models on 
the recent multi-patch, multi-group epidemic modeling framework 
by Bichara and Iggdir [6] and we surface three high-level abstract 
concepts to simplify the process of defning a disease model: groups, 
locales and facilities. 

(1) A group is used to model unique characteristics of a sub-
population. For example, one can use groups to defne disease-
specifc parameters for super-spreaders or seniors or front-
line workers. 

(2) A facility is used to model unique environments that afect 
disease dynamics and how often and how long diferent 
population groups reside in these environments. For example, 
one can describe how disease spreads between individuals 
of a group in malls, places of worship, shared dormitories, 
or schools. 

(3) A locale is used to model distinct administrative geographic 
regions that may have diferent policies and population dis-
tributions. For example, agricultural towns are distinct from 
urban centers; the former may have an older, less densely 
packed population than the latter. 

EpiPolicy connects groups, facilities and locales by mobility matri-
ces that describe how population groups move between facilities 
and locales. 
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These concepts help policy-makers express interventions as they 
defne groups and environments on which diferent interventions 
directly apply. By defning a facility for schools, for example, the 
efect of an intervention such as school closure is easily specifed as 
limiting the movement of children and adults to the school facilities. 
By defning groups such as pregnant women, one can model dis-
eases such as Zika that afect specifc population groups diferently. 
These high-level concepts support our users with tasks , 

and ,while directly addressing chal-
lenge . 

Separation of Concerns. A policymaking team 
has many tasks and concerns to tackle more or less simultaneously. 
To allow users to focus on one specifc task and concern at a time, 
EpiPolicy provides separate pages for each task. For example, a 
disease model page allows users to focus only on describing the 
disease dynamics (the compartmental model) without worrying 
about population heterogeneity. A groups page allows the user to 
defne diferent population groups and a parameters page allows 
users to defne group-specifc disease dynamics. 

We extend the separation of concerns to how we specify in-
terventions and plans. Each intervention has an effect() and a 
cost() function applied at each time step of a simulation when im-
plemented. Interventions either increase or decrease capacities (e.g. 
building a feld hospital) or infuence model parameters (e.g. masks 
reduce transmission rates). All interventions that afect parameters 
do so through multiplicative factors. This allows users to specify 
interventions independently. 

One can think of interventions as single moves in a game that a 
planner can choose to combine and deploy at diferent locations and 
times by constructing a schedule. This declarative nature of inter-
ventions is intimately intertwined with the separation of concerns 
design principle. First, by separating planning from intervention 
specifcation, we enable EpiPolicy to automatically search for cost-
efective plans using Monte Carlo Tree Search (MCTS) [15]: users 
describe what they wish to achieve — low disease burden and low 
economic costs — and EpiPolicy determines how best to achieve 
the desired outcome. Second, we enable the division of labor or task 
delegation, which is common in collaborative teams [49]. For exam-
ple, epidemiologists and health economists can focus on specifying 
the disease model and the inner-workings of diferent interventions, 
while policymaking ofcials can focus on constructing a politically 
acceptable schedule of interventions. 

This design principle supports our users with tasks and 
addresses challenge . 

Sufcient and Minimal APIs. Our observations of 
epidemiologists showed a high degree of programming literacy and 
sophistication. EpiPolicy is not meant to be a drag-and-drop UI that 
hides all complexity. On the contrary, EpiPolicy is a framework 
that surfaces as cleanly as possible (i) complex disease modeling 
(ii) intervention design and (iii) planning choices. Expert teams can 
thereby clearly communicate their decisions, refne them and study 
their impact. 

Specifcally, EpiPolicy allows users to write in Python code 
how an intervention behaves through the effect() and cost() 
functions. Each intervention has a clearly separated set of control 
parameters that can be set as constants or as ranges that can be set 
by Monte Carlo simulation when searching for improved schedules 
or when conducting sensitivity analysis. For example, a workplace 
closure intervention can have the degree of closure as a control 
parameter with range 0 (no closure) to 1 (full closure) and EpiPolicy 
can choose the appropriate degree of closure over time to contain 
the epidemic. EpiPolicy’s simulator calls the efect and cost func-
tions at every simulation time-step. These functions may need to 
access or modify the values of parameters (the infection rate in a 
specifc locale for a specifc population group), the internal state of 
the simulation (e.g. the current number of infected or vaccinated 
individuals), or update running aggregates such as costs. We en-
force a hierarchical naming convention for all parameter- and state-
values and a high-level regular-expression language enables the 
access and appropriate modifcation of these values within each 
function (See Section 3.2.3). 

Not everyone in an expert team may be capable of coding inter-
ventions. Our goal is to allow the users with programming expertise 
(e.g. computational epidemiologists) to construct these interven-
tions in a fashion where they can (i) easily expose their parameters 
for other members of the policymaking team, (ii) separate their 
efects from their costs and (iii) methodically access and modify the 
internal state of the system (e.g. the disease transmission rate, the 
time spent by a group within certain facilities) at every simulation 
time step through a minimal simulator API of only four well-defned 
methods. These methods aim to improve code-readability, ensure 
correctness (i.e. ODEs remain continuous) and enable the concur-
rent execution of multiple interventions (See Section 3.2.3). 

This principle supports users with tasks and 
and addresses challenge . 

In addition to the three main principles discussed above, EpiPol-
icy visualizes the disease model, mobility patterns and interven-
tion schedules and the results of one or more diferent intervention 
plans. These visualizations allow users to validate their specifca-
tions by eye and to interactively assess diferent policies. 

EpiPolicy uses an open JSON specifcation format to interface 
with external data sources or third-party tools. For example, we 
developed plug-ins that allow EpiPolicy to use population data 
from NASA’s gridded population of the world (GPW) data set [13], 
to utilize standard mobility matrix generating scripts, and to ex-
tract parameters from an agent-based population simulator that 
models human interaction patterns in schools and workplaces [53]. 
EpiPolicy also exports simulation results in JSON to allow users to 
integrate results in custom visualization dashboards as well or to 
enable further analysis beyond the current scope of EpiPolicy. 

Finally and quite importantly, EpiPolicy provides basic prove-
nance: every confgurable object in EpiPolicy such as a parameter, 
an intervention or a schedule can be associated with a research 
paper, a script, a URL, or a free-form text description that describes 
how the object was confgured. 
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These capabilities collectively make EpiPolicy a more complete 
model management system, hence addressing challenge 

. 

3.2 EpiPolicy in Action 
Consider a team of epidemiologists and public-health ofcials that 
are working to curb the COVID-19 epidemic in United Provinces 
(UP)— a fctitious1, economically developed country with three ad-
ministrative regions, Hills, Beaches, and Pastures, and a population 
of 2.2 million. The team has to conduct several of the tasks listed in 
Section 2.1. EpiPolicy separates out each of the steps (sub-tasks) 
involved in policymaking into separate pages. Figure 1 illustrates 
the UI of EpiPolicy: the left menu lists a page for each sub-task. 
An accompanying video demonstrates the features of each page. 
Amira and Ben are members of the expert team who will illustrate 
the diferent features of EpiPolicy. 

3.2.1 Compartmental Model. Amira frst needs to specify her dis-
ease model in the Model page (Task ). EpiPolicy provides 
a set of standard models obtained from existing literature (e.g. SEIR 
and SIR), which can be used as-is or modifed as needed (Figure 
3.1). Users can also create their own models from scratch by speci-
fying compartments, equations, and parameters. Amira constructs 
an SEIR COVID-19 model with additional compartments model-
ing disease severity, hospitalization, vaccination and quarantine. 
She also introduces parameters for reinfection and vaccine failure. 
EpiPolicy graphically visualizes the model (Figure 2). For prove-
nance ( ), Amira can add a reference to the source (e.g. 
citation, link or generating script) of any parameter value in any 
page (Figure 3.1). 

3.2.2 Population Modeling: Locales, Groups, and Facilities. We will 
now describe the sequence of pages that will help Amira model 
the population (Task ). Amira moves to the Locales 
page to describe administrative locales relevant to the team’s public-
health policies. Amira can either provide custom shapefles and 
regional population data in a JSON format or utilize a plug-in that 
loads this data directly from NASA’s GPW data for a specifc country 
(Figure 3.2). A country can have multiple administrate levels: 0 for 
the entire country, 1 for states or provinces within a country, 2 
for sub-regions or counties within level 1 locales and so on. Here, 
Amira selects UP as the country, 2020 as the year, and chooses 1 as 
the administration level, as she wants to model the epidemic at the 
provincial-level. 

Amira creates the following three groups in the Groups page: 
children (ages 0-19), adults (ages 20-49), and seniors (ages over 
50). Amira can defne any group if she knows its proportion of the 
population. A plug-in allows Amira to utilize demographic data 
available from NASA’s GPW dataset to defne age- and sex- based 
groups. 

In the Facilities page, Amira defnes four facilities, � . Members of 
diferent groups, �, move to these facilities throughout the day, re-
side within them for a certain proportion of their time, and interact 
with members of other groups (Figure 3.4). For example, children 

1The goal of this paper is to motivate and demonstrate the use of EpiPolicy, not to 
present or analyze the specifc modeling choices or measures of any government in 
handling an epidemic. 

spend roughly a 1/3 of their time in schools interacting mostly with 
other children (> 90%) of the time. Amira provides two matrices 
(per locale if the distributions vary regionally): time spent by each 
group in each facility (� �) and for each facility the percentage of 
time spent interacting with other group members (� ��). EpiPolicy 
also provides a plug-in to extract this data from the agent-based 
human-interaction simulator: SynthPop [54]. 

Mobility Between Locales. On the Mobility page, Amira describes 
mobility patterns across land borders with mobility matrices (Figure 
3.5). EpiPolicy provides several mobility algorithms to automati-
cally construct these matrices from each locale’s border perimeter 
and population size (e.g. the impedance algorithm [37]). 

Tailoring Parameters to Subpopulations. In the Parameters page, 
Amira refnes specifc parameters in her model (Task ). 
Because older patients sufer more severe outcomes with COVID-
19, she flters for disease severity and hospitalization parameters 
and increases their rates for seniors across all locales (Figure 3.3). 

3.2.3 Specifying Interventions and Costs. In EpiPolicy, an interven-
tion is described by two functions: effect() and cost(). Before 
we describe how these functions are specifed, it is important to 
understand how EpiPolicy maintains information about (i) the 
current state and (ii) the parameters that modify the ordinary dif-
ferential equations that model disease spread across the diferent 
population groups as they reside within facilities and move across 
locales. 

EpiPolicy maintains the following fve matrices: 
(1) A state matrix (� [�, �, �]) maintains the number of individuals 

within compartment � , locale � and group �. 
(2) A mobility matrix (� [�, �1, �2]) describes the percentage of 

time an individual of population group � from locale �1 
spends in locale �2 due to mobility. 

(3) A facility matrix (� [�, � , �]) describes the percentage of time 
an individual of group � spends within a facility � in locale 
� . 

(4) A contact matrix (� [�, � , �1, �2]) describes the percentage of 
time an individual of group �1 interacts with an individual 
of group �2 within a facility � in a locale � in such a way to 
allow disease transmission. 

(5) A parameter matrix (� [�, �, � , �]) describes the disease param-
eter values (e.g. incubation rate, recovery rate) for a certain 
population group � within a specifc locale � and facility � . 

These matrices are used by the simulator to update the state 
matrix at every time step (by default, a single day) of the simulation. 
For example, to update the number of exposed individuals (� = E) 
of a group � at locale � for the disease model described in Figure 3, 
the simulator executes the ODE �E/�� = beta × I × S / N − sigma 
× E with the (i) group-locale-specifc parameter values of beta 
(transmission rate) and sigma (incubation rate) extracted from the 
parameter matrix � , (ii) and an estimate of the infectious population 
in contact with the group (I) computed from the mobility � , facility 
� , and contact � matrix. 

Diferent pages of the UI (Figure 3) expose diferent views of 
these matrices to allow users to adjust their base values. EpiPolicy 
also provides a programmatic API, a selector, to access and modify 
the values in these matrices: sim.select(S). The selector can also 
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Figure 1: User interface of EpiPolicy. On the left is (1) a menu panel to navigate to diferent pages — each page supports a 
specifc task. The Results page visualizes the results of a simulation to help users better understand and communicate the 
impact of a specifc policy. The page shows: (2) a table of total infections, deaths, and total economic cost, (3) a color-coded map 
illustrating cumulative infections per locale , (4) a schedule of interventions, (5) a chart of reproduction numbers over time, (6) 
standard compartment time-series, and (7) cumulative cost line charts. 

Figure 2: A COVID-19 compartmental model with nodes representing compartments and edges annotated with parameters 
infuencing the transition ODEs. EpiPolicy automatically generates this visualization from the ODEs that describe each 
compartment’s dynamics. 

access other objects such as the state of a schedule at a given time is a natural API design choice, because the matrices are stored as 
point, or an intervention’s running cost using simple dictionaries multi-dimensional tables and a selector simply returns a view from 
and regular-expressions. The design of the selector is infuenced one of these tables. 
by tabular query languages such as SQL and Python pandas. This 
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Figure 3: UI snippets from EpiPolicy. (1) Specifying the disease model with compartments and ODEs in the Model page. (2) 
Loading population data and administrative locales in the Locales page. Note United Provinces (UP) is a fctitious country used 
only for illustrative purposes. (3) Filtering and modifying disease parameters for a specifc group within some locales in the 
Parameters page. (4) Specifying time spent by groups in diferent facilities and interacting with other groups in the Facilities 
page. (5) Using the impedance algorithm to generate border mobility patterns for UP in the Mobility page. 

For example, to select the transmission rate ('beta') for children 
in the Hills locale within the school facility, we simply make the 
following call to EpiPolicy’s simulator API: 
sim.select({'parameter':'beta', 'locale': 'UP.Hills', 
'facility':'School', 'group':'Child'}) 

To select the number of infected individuals across the diferent 
groups and locales, we make the following call: 
sim.select({'compartment':'I', 'locale': '*', 'group': 
'*'}) 
This call returns a table — a pandas data frame — with the number 
of individuals for each group and each locale. Regular expressions 
provide richer expressive power when constructing selectors. For 
example, we can select compartments outside a specifc locale using 
the following regular expression: 'locale':'~UP.Hills'. Syntac-
tic shortcuts allow users to construct more concise expressions: 

e.g. sim.select({'compartment':'I'}) is equivalent to the ex-
pression above. The use of data frames allows users to formulate 
more complex operations over the resulting tables. For example, 
sim.select({'compartment':'I'})['Value'].sum() fnds the 
total number of infected individuals. 

We now describe how to specify the efect and cost of an inter-
vention by using selectors and selection-expressions. 

Intervention Efect. An intervention ultimately afects how a pop-
ulation group transitions through the diferent compartments. To 
do so, an intervention’s effect() function manipulates some of 
the values in one of EpiPolicy’s matrices using one of the following 
two methods: 

• apply(S, f) multiplies a given factor f onto the value se-
lected by the selection expression S. For example, in Listing 1, 
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sim.apply({'parameter':'beta'}, 1-f*c) reduces the 
transmission rate by a factor of f*c. 

• move(S1, S2, n) transfers n individuals from a source 
compartment S1 to a destination one S2, each defned by a 
selection expression while ensuring the ODEs remain con-
tinuous. For example, in Listing 2, 
sim.move({'compartment': 'S', 'group':'Adult'}, { 
'compartment': 'V', 'group':'Adult'}, n) moves n 
adult individuals from the susceptible to the vaccinated com-
partment proportionally across all locales. 

These two methods are restrictive but powerful. With apply(S, 
f), we allow users to change parameter values using multiplicative 
factors. This enables the straightforward integration of multiple 
intervention efects that target the same parameter. For example, 
if mask-wearing reduces transmission rates by a factor of 0.8 and 
increasing hand-disinfection stations independently reduces trans-
mission rates by a factor of 0.5, then collectively, they reduce trans-
mission rates by a factor of 0.5 × 0.8. With move(S1, S2, n), we 
capture a variety of interventions that have hard capacity limits. 
For example, vaccination interventions where only a fxed number 
of doses can be distributed daily, or constructing feld hospitals that 
have a fxed number of beds. These interventions directly move 
individuals from one population compartment to another without 
modifying disease characteristics, mobility or group interaction 
patterns. 

EpiPolicy separates out the control parameters of an interven-
tion (e.g. the degree of compliance, the efcacy of a vaccine, number 
of available doses, percentage of people allowed in workplaces or 
schools, etc.) to allow users (i) to easily modify them without chang-
ing the code when constructing schedules (See Section 3.2.4), or (ii) 
to provide discretized ranges for each parameter to enable Monte 
Carlo Tree Search to search for optimal settings (See Section 3.2.6) 
or to conduct sensitivity analysis. 

Intervention Cost & Other Costs. EpiPolicy’s programmatic API 
also provides the following method to enable the specifcation of 
intervention costs: 

• add(S, c) adds a given amount c to a running cost aggre-
gate defned by a selection-expression S. For example, in 
Listing 2, sim.add({'intervention' : 'vaccination'}, 
c*doses) adds the daily cost of administering a fxed number 
of doses to the running costs of the vaccination intervention. 

We allow users to specify costs with the help of a Python function 
rather than through simple constants to capture more complex but 
realistic cost models. For example, an intervention that increases 
hospitalization capacity by constructing new feld hospitals has 
(i) an initial construction cost, (ii) a daily running cost and (iii) a 
tear-down cost. Certain intervention costs may also depend on the 
internal state of the simulation such as the number of individuals 
across diferent compartments (e.g. Listing 3). 

In listings 1, 2 and 3, we see how Ben describes the efect and 
costs of a mask-wearing intervention and vaccinations as well as 
the costs of quarantining individuals using EpiPolicy’s API. Ben 
also describes several other interventions including school and 
workplace closures, social distancing, border closure, and contact 
tracing and testing (Task ). He also describes other 

disease burden costs such as the costs from the loss of life and the 
economic toll from reduced work productivity due to sick days or 
work absences. 

Why a Python API?. A programmatic API empowers users to 
describe any intervention that can modify the simulation state 
beyond those that one can create from a set of programming-free, 
form-based widgets. A Python API is a natural choice for EpiPolicy 
as its simulator and MCTS optimizer are developed in Python. In our 
discussions with computational epidemiologists we asked about the 
programming languages they were comfortable with and while R 
was the most commonly used programming language for epidemic 
modelling, they also expressed a familiarity with Python and its 
syntax. 

3.2.4 Intervention planning with schedules. In the Schedule page, 
Ben can specify when, where and how to apply an intervention (Task 

). To specify when, Ben can either provide multiple ex-
act starting and stopping dates or a periodic schedule. Alternatively, 
Ben can provide a conditional start and stop with the help of trig-
gers: predicate functions that start or end an intervention if certain 
conditions are met (e.g. infections rise above or drop below a given 
threshold). To specify where, Ben can describe for each intervention 
time interval, which locales to selectively apply the intervention to 
with the help of selection-expressions (e.g. {'locale' : 'UP.*'} 
applies an intervention over all the provinces in UP). To specify 
how, Ben can provide explicit values for each intervention’s control 
parameters. As Ben constructs the schedule, EpiPolicy visualizes 
it with a Gantt chart that color codes each intervention and uses 
opacity to encode the intensity with which it is applied (Figure 4). 

3.2.5 Viewing results. Amira wishes to view the results of Ben’s 
schedule and to compare it to one that she had previously con-
structed (Tasks , ). In the Initialize page, she 
defnes starting simulation conditions such as the number of in-
fected individuals at diferent locales. After executing the simula-
tions, she can view the outcomes of each schedule independently 
in the Results page. The page shows information that experts may 
require to assess the efcacy of the policy under consideration (Task 

): (a) total infections, deaths, and cost provide an 
overview of the cumulative impact of the epidemic, (b) a map color-
coded by cumulative infections per locale illustrates the spread of 
infection across the country, allowing users to easily identify hard-
hit areas, (c) a schedule of interventions provides a quick overview 
of the policy, (d) a chart of reproduction numbers (basic �0 and 
efective �) provides a rough indication on whether the outbreak 
will die out (�0 < 1) or persist (�0 > 1) or whether herd immunity 
has been attained (� < 1), (e) standard compartment time-series 
(e.g. daily total number of infected individuals) and (f) cumulative 
‘dollar’ cost graphs for the disease and the policy including the cost 
of each intervention over time. All these charts are linked: selecting 
a locale in the map focuses the results to only that locale, moving 
a guideline across the schedules or any of the other line charts 
provides details specifc to that day in all the other charts. 

Amira can also use the Compare page to compare two or more 
simulations (Tasks , ). This page con-
tains fewer visualizations than the more detailed Results page. We 
selected the following visualizations for easier policy comparisons: 
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def effect (control_parameters): 
c = control_parameters[ 'compliance' J 
f = control_parameters[ 'factor_reduction' J 
sim . apply ({ 'parameter' : 'beta' }, 1-f *c) 

def cost (control_parameters): 
price = control_parameters[ 'daily_mask_pp_cost' J 
c = control_parameters[ 'compliance' J 
n = sim . select ({' compartment' : '~D' , 'locale' : 'UP.*' , 'group' : '*' })[ 'Value' J . sum() #the total living population size 
sim . add ({ 'intervention' : 'mask' }, price*c*n) 

def effect (control_parameters): 
doses = control_parameters[ 'daily_doses_administered' J 
eff = control_parameters[ 'efficacy' J 
ratio = control_parameters[ 'seniors_to_adults_ratio' J 
sim . move ( 

{ 'compartment' : 'S' , 'group' : 'Adult' }, {' compartment' : 'V' , 'group' : 'Adult' }, doses * eff * (1 - ratio)) 
sim . move ( 

{ 'compartment' : 'S' , 'group' : 'Senior' }, { 'compartment' : 'V' , 'group' : 'Senior' }, doses * eff * ratio) 

def cost (control_parameters): 
doses = control_parameters[ 'daily_doses_administered' J 
c = control_parameters[ 'vaccine_cost_pd' J 
sim . add ({ 'intervention' : 'vaccination' }, c*doses) 

def cost (control_parameters): 
c = control_parameters[ 'daily_quarantine_cost_pp' J 
q = sim . select ({ 'compartment' : '"Q' })[ 'Value' J . sum() 
sim . add ({ 'running-costs' : 'quarantine' }, c * q) 

jt6. optimize ! 
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Listing 1: A mask wearing intervention applied to all provinces in UP. effect() reduces the global beta infection transmission 
rate by a multiplicative factor. cost() estimates the total cost of wearing masks per day when only a fraction of the total 
population complies. 

Listing 2: A vaccination intervention. effect() moves a fxed number of individuals (equal to the number of administered 
doses) from the susceptible compartment to the vaccinated compartment. Only seniors and adults can be vaccinated. The 
‘seniors_to_adults_ratio’ parameter controls the distribution of the available doses across adults and seniors. cost() adds 
the cost of the total number of doses administered per day to the running cost of the intervention. 

Listing 3: The daily cost() of quarantining individuals during an outbreak. All compartments that start with ’Q’ are quarantine 
compartments. Calling select with a regular expression compartment selector ˆQ returns the total number of quarantined 
individuals. 

(a) table of total infections, deaths and cumulative costs per policy, 
(b) a Gantt chart for each schedule that visually illustrates key pol-
icy diferences, and (c) a line chart of each policy’s reproduction 
numbers that can help determine which policies are more efective 
at containing the outbreak in a shorter time-frame. 

3.2.6 Automatic Exploration of Policies. Specifying intervention 
schedules is often a trial-and-error process as users must adjust 
multiple intervention parameters (when, where and how) in order 
to fnd an intervention plan that minimizes overall disease burden 
and economic cost. To illustrate the complexity of this problem: 
with � interventions, � locales, and a planning timeline of � days: 

there are ��
� 
possible schedules to consider! This is excluding the 

possible options for interventions with free control parameters (e.g. 
the degree of workplace closures). In the Optimize page, Ben can 
rely on EpiPolicy’s Monte Carlo Tree Search (MCTS) algorithm to 
search for a cost-efective policy (Task ). MCTS will 
generate several thousands of plans, simulate each one, and suggest 
the most cost-efective one it has found. 

For a primer on MCTS and its efectiveness in solving planning 
problems, we refer the reader to references [14, 15]. In EpiPolicy, 
each MCTS execution recommends an action: a set of interventions 
and their parameterizations for a single day given the day’s state. 
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Figure 4: Schedule Specifcation. Users can specify when an intervention is applied with (1) fxed start and end dates, or (2) 
trigger functions that start or end an intervention when certain conditions are satisfed; (3) where it is applied; and (3) how by 
providing explicit values for its control parameters. Here, full work place closures (degree of closure = 1) are enforced from 
mid April to end of August 2020 in all provinces, and relaxed (degree of closure = 0.5) in all provinces from Sept 2020 to end of 
April 2021. 

The state includes the distribution of the diferent population groups 
across locales and the diferent disease compartments. To construct 
a plan for an entire year, MCTS is executed 365 times, once for each 
day, where the state of day � is determined by applying the action 
or the interventions selected by the previous MCTS execution on 
day � − 1. 

Each MCTS execution consists of several thousand iterations of 
four phases that construct a tree: selection, expansion, simulation 
and backup. At the root of the tree is the node representing the cur-
rent day’s state. Each iteration begins at the root and traverses the 
tree by selecting a child node (the next day’s state) as a consequence 
of applying an action — here a specifc set of interventions along 
with their parameterizations — or expands the tree by exploring a 
new action. The choice between exploiting a promising past action 
or exploring a new action is determined by the standard Upper Con-
fdence Bound (UCT) algorithm [26]. EpiPolicy’s MCTS tree is only 
30 nodes deep. On reaching a leaf node, a random playout of actions 
for each of the remaining 335 days is generated. The cumulative 
cost at the end of the 365-day time-horizon, which includes both the 
economic costs of the interventions as well as the overall costs of 
the disease, is back-propagated up the tree from the leaf node. Each 
node averages the costs of the trajectories initiating at its children 
to estimate the expected return cost for each action. After 10,000 or 
a confgurable number of iterations, MCTS chooses the action from 
the root node with the lowest cost normalized by how often that 
action was traversed in the MCTS execution; this normalization 
avoids choosing outliers. One can confgure MCTS to run more or 
fewer iterations: the greater the number of iterations, the larger 
the space of plans that MCTS visits leading to the potential discov-
ery of a better plan. Given the computationally intensive nature 

of MCTS, we perform several optimizations to ensure reasonable 
performance including parallelization, coarse-discretizations of the 
parameter space, heuristically pruning out infeasible plans, and 
using just-in-time compilation to ensure the Python simulator can 
run a full-year simulation in less than 3 seconds. 

MCTS runs asynchronously and once complete, its chosen sched-
ule can be loaded into the UI, and its results viewed or compared 
with other hand-crafted schedules. Despite its efectiveness in solv-
ing planning problems, MCTS can only explore a small fraction of 
possible plans and it requires coarse discretizations of the state and 
action space. It is also difcult to transfer policies — the probability 
distribituion of actions given states — learned from one MCTS ex-
ecution to the next. Finally, the current implementation does not 
recommend a set of alternative and equally cost-efective plans, 
only the best one found so far. We are currently exploring alterna-
tive reinforcement learning techniques that avoid some of these 
limitations. 

3.2.7 Further analysis. EpiPolicy’s UI, a client, generates a JSON 
specifcation to describe an entire simulation: the disease and popu-
lation models, the interventions, and optionally the schedule. This 
is fed to EpiPolicy’s simulator, a server, which also returns its re-
sults as a JSON fle that is visualized by the client’s dashboards. 
The client acts as a model management system keeping track of all 
simulations and MCTS executions. The division of work across the 
client and server and the materialization of inputs and outputs as 
open-format JSON fles allows the integration of many third-party 
tools and custom external scripts that perform a variety of more 
specialized analysis using EpiPolicy’s simulator such as param-
eter sensitivity analysis and intervention impact analysis (Task 
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). In Section 4, we describe how one group conducted 
impact analysis with EpiPolicy. 

4 QUALITATIVE FEEDBACK 
We gathered feedback on EpiPolicy from experts in two ways: 
(a) informal interviews with public-health ofcials (after demon-
strating EpiPolicy) to understand what diseases and interventions 
they worked with and how they modeled them; we then conducted 
small-scale feasibility studies where we modeled their use-cases 
on EpiPolicy, and (b) a hands-on multi-day collaboration with 
an expert team of public-health policy-makers, where EpiPolicy 
was used to analyze the impact of diferent policies in reducing 
infections and deaths from the COVID-19 pandemic. 

Participants. Participants (30-70 years old) in our feasibility stud-
ies and focus group included several researchers at a university, 
a public-policy consultancy, EcoHealth Alliance, and six public-
health professionals (2 females, 4 males) working within the health 
department of a government. All participants had higher-education 
degrees including MDs, PhDs or Masters degrees in Statistical Mod-
eling, Epidemiology, Mathematics or Economics, or several years of 
professional experience in the public health sector and infectious 
disease control. Of the participants who have experience with the 
computational modeling of epidemics, all had programming experi-
ence with either R, Python or Matlab, and all were familiar with 
Python. 

Feasibility Studies. From our discussions with diferent stake-
holders implementing the following scenarios with EpiPolicy was 
straightforward with direct mappings between the concepts in the 
use-cases and in EpiPolicy. 

(1) Hospital Capacity Building. With EpiPolicy, one can defne 
interventions that move a discrete number of individuals 
from one compartment to another. This allows us to con-
struct fxed capacity compartments for hospitalized patients. 
Non-hospitalized patients transition through other compart-
ments with higher likelihood of worse outcomes. A build-
hospital intervention increases capacity at some cost as well 
as incurs running cost of the increased capacity through 
time. Using MCTS, EpiPolicy suggests increasing hospital 
capacity by building feld hospitals in anticipation of infec-
tion peaks and decreasing hospital capacity when infections 
drop to baseline hospital capacities to balance the economic 
costs of building hospitals with the disease costs associated 
with mortality and infection. We ran 10,000 iterations for 
each MCTS execution with a total of 8 hours of computation 
time on a 64-core machine for this scenario. 

(2) Vaccination Portfolio Selection. One can defne multiple inter-
ventions: one for each vaccine available and provide control 
parameters on its efcacy, availability and cost. Using MCTS, 
EpiPolicy can propose a schedule and distribution of vacci-
nations across groups that reduces overall disease burden 
and economic cost. We ran 20,000 iterations for each MCTS 
execution with a total of 16 hours of computation on a 64-
core machine. For this scenario’s disease, population demo-
graphics, administrative locales, and vaccination availability, 
MCTS produces a plan that immediately utilizes all available 

vaccinations and prioritizes high-risk seniors over adults. 
This plan reduces the overall mortality in seniors by 80% but 
also slightly increases cumulative infections in adults by 10% 
when compared to an indiscriminate vaccination plan. The 
overall costs of both plans are similar (within a 2% diference 
margin). 

(3) Modeling Distinct Work forces. Diferent groups of a popu-
lation face higher risks of disease transmission. In the US 
for example, COVID-19 spread rapidly among workers in 
the meat-packing industry [43]. In Singapore, blue-collar 
workers living in shared dormitories had greater risk of ex-
posure [42]. Using groups and facilities, it is straightforward 
to model these distinct work forces and construct targeted 
interventions. 

(4) Modeling Hosts and Carriers. Diseases like Rift Valley Fever 
afect cattle (hosts) but are transmitted by mosquitoes (carri-
ers) at water bodies. With EpiPolicy, one can model hosts 
and carriers as separate groups that interact at water bod-
ies (a facility). Interventions like draining pans (small pools 
that form after rain), or vaccinating a herd are straightfor-
ward to model in EpiPolicy, demonstrating its use beyond 
human-transmittable diseases. 

The feasibility studies served mainly as a proof of principle that 
EpiPolicy can capture diferent disease models and intervention 
scenarios. 

Focus Group Observations. In this multi-day collaboration, we 
created an alternative model to an existing one that was built and 
maintained by our partners over several months. While the models 
were slightly diferent, they were both deterministic compartmen-
tal models. The model included compartments for vaccinated and 
quarantined individuals and allowed for re-infection and death. 
It used NASA’s GPW dataset to construct age-based population 
groups and used impedance to describe border mobility. It had four 
facilities: household, workplace, school and community places. We 
implemented the following interventions: workplace and school 
closures, border travel restrictions, mass-screening and contact 
tracing, surface-sterilization, social distancing, an intervention for 
every available vaccine within the administrative regions of this 
team, and lockdowns. 

First, the team wanted to describe as closely as possible a sched-
ule of interventions similar to one that had been implemented in 
their administrative regions. We observed the team as they collabo-
rated on Zoom with EpiPolicy. The team members grasped with 
minimal efort the details of the model and the interventions. The 
diferent visualizations in EpiPolicy enabled this. Three members 
of the team — those with programming or computational epidemic 
modeling expertise — then participated in modifying the coded 
interventions over Zoom. They dictated code modifcations and 
stated that the efect and cost functions were easy to construct 
and modify once they understood how interventions worked and 
examined a few code examples of interventions similar to those 
in listings 1 and 2. The team’s ability to discuss and iteratively 
refne the interventions refects the importance of our third design 
principle ( )— keep the API of interventions as minimal 
as possible with only two functions, efect and cost, and provide 
a sufcient programmatic API that allows users to cleanly access 
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the matrices that determine the progression of an epidemic and the 
aggregate (mobility or interaction) behavior of population groups 
within interventions. The members debated the exact schedule and 
how to better implement or parameterize certain interventions: 
Does mask wearing really reduce transmission rate by this much? 
Are we exaggerating its efect here: children under 3 years old don’t 
wear masks, people don’t wear masks within households. Each such 
discussion resulted in a redesign of an intervention or modifying its 
parameters or schedule (start or end date). These modifcations were 
done during the meeting refecting the ease with which EpiPolicy 
supports such refnements. Thus, EpiPolicy elevated the discussion 
from code specifcs to aspects relevant to disease modeling and 
policymaking as was intended by our second design principle of 
separating concerns ( ). 

Second, the team wanted to conduct a post-hoc impact analysis of 
each intervention: what-if we eliminated intervention X entirely from 
the schedule? How would this impact overall deaths and infections? 
and How would this impact deaths and infections over time? As the 
team interacted with EpiPolicy, it was evident how easy turning 
on or of an intervention and executing a new simulation was. After 
viewing a few confgurations, the team wondered how easy it would 
be to generate a powerset of schedules. This was not within the 
scope of EpiPolicy. However, since all model-, intervention- and 
schedule- specifcations are described in JSON fles, it was a few 
hours’ efort to write an external Python script that generated the 
powerset of schedules, executed each combination on EpiPolicy’s 
simulator and stored the JSON output results of each simulation 
for further analysis. 

EpiPolicy’s simulator can execute a one year simulation in 2-3s. 
This high-performance is crucial for the Monte Carlo Tree Search 
algorithm that can generate thousands of simulations to search for 
a cost-efective schedule. The team commented that conducting 
such an analysis with their current model was not feasible without 
a major code rewrite. 

A further afrmation of the importance of separating concerns 
was a request by the team: They wanted EpiPolicy 

to support multiple views for diferent roles. A view for the ‘mod-
eler’ role that has access to the pages for specifying disease models, 
writing intervention code, and the ability to directly modify the 
JSON; and another view for the ‘policy-planner’ role that supports 
only changes to intervention parameters, schedules and exploring 
simulation results and comparisons. 

Limitations. In our observations of users working with EpiPol-
icy, we found that users still struggled with challenge : 
the (groups, locales, facilities) concepts ( ) helped 
connect the mental model of how an intervention should work 
with its mathematical representation but certain constructs were 
difcult to map. For example, epidemiologists often think of disease 
transmission as a result of contact: the more contacts an agent 
has the higher their likelihood of infection. Agent-based models 
naturally capture this intuition but transforming this intuition into 
appropriate transmission rates at diferent facilities is not trivial. 
A future extension of EpiPolicy might explore ways of automat-
ically transforming (albeit approximately) an agent-based model 
specifcation into a deterministic compartmental one. One possible 
way is to run small-scale agent-based simulations to globally infer 

parameters of interest. For example, one can simulate the efect 
of limiting social gatherings in public spaces to � contacts in an 
agent-based model to estimate the global efect of this intervention 
on the infection transmission rate as � changes. 

Users understood that EpiPolicy models interactions among 
interventions as multiplicative factors. For example, mask wearing 
and social distancing each reduce transmission by some fraction less 
than 1. In EpiPolicy, doing both simultaneously results in reducing 
transmission by the product of those fractions. Combining the 
efects of multiple interventions may sometimes be better modeled 
by a more complex function. EpiPolicy will allow that. 

Finally, EpiPolicy surfaced many options for the custom pa-
rameterization of the disease and population models. The ability 
to easily see all possible parameters and modify their values was 
greatly appreciated. This appreciation was almost always followed 
by “Now, set them for me!" While MCTS sets intervention control 
parameters (e.g. the degree of mask compliance to enforce) and 
where and when to apply an intervention, it cannot set parameters 
that describe the disease (e.g fatality rate) or the population (e.g. 
the percentage of the population with chronic diseases, or the per-
centage of the population that travels regularly between locales). 
Our users have to make these choices if they are pertinent to their 
policies. 

One can argue that fnding the right values for parameters is 
one of the principle tasks of the epidemiological modeler. We feel, 
however, that with a sufcient collection of open models and inter-
ventions built over time on EpiPolicy, it would become easier to 
infer parameter settings from prior examples. 

5 RELATED WORK 
EpiPolicy draws inspiration from recent trends in the HCI commu-
nity in the areas of public policymaking and interactive modeling. 
Here, we discuss these trends and also review related work in the 
broader epidemic modeling literature. 

5.1 Policymaking and HCI 
The intersection of policymaking and HCI research has largely 
focused on three directions: (i) how public policy infuences HCI re-
search funding, regulatory and ethical considerations, and practices, 
(ii) how HCI research fndings should infuence policies on accessi-
bility, usability, ergonomics, civic participation, urban planning, etc., 
and (iii) how best to communicate relevant HCI fndings to policy-
makers [16, 27–29, 41]. Like EpiPolicy, certain works have focused 
on opportunities for HCI research to infuence policymaking within 
specifc domains: e.g. environmental public policies [45] or city-
planning [33]. A core theme through all these research works is 
that HCI and policymaking research can only have an impact if the 
relevant stakeholders are adequately engaged in the design process 
of policymaking support tools. 

5.2 Epidemic Simulation 
Epidemic modeling tools have and continue to be used by public-
health ofcials to understand disease dynamics, to predict its scale 
and trajectory, and to inform policies including planning response 
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Table 1: A comparison of three state-of-the-art compartmental epidemic simulation systems with EpiPolicy. We break down 
each of the tasks described in Section 2.1 into more granular components and organize them by the challenges described in 
Section 2.2, to illustrate the diferences between the tools and the core novel contributions of EpiPolicy. 

strategies and allocating resources [2, 25, 30, 36, 44, 48]. Our obser-
vations of the challenges that public-health teams face when work-
ing with epidemic simulation tools are not unique. For example, a 
review of the impact of emergency modeling during the 2009 H1N1 
pandemic on decision-making and the interactions between model-
ers and decision-makers echoes many of the challenges we describe 
in Section 2.2 including (i) difculties in generating, sharing or dis-
seminating modeling results to decision-makers ( ), 
(ii) difculties in understanding the structure and the assumptions 
made by the models ( ), (iii) a lack of transparency 
or realism in implemented interventions ( ), and (iv) 
misaligned modeling expectations - predict the course of an epi-
demic vs. plan interventions [30]. 

One approach to epidemic modeling is to translate mathematical 
models directly into code in a general-purpose programming lan-
guage such as R or Python. Modelers here use modeling libraries and 

frameworks such as [10, 11, 24, 50, 51]. While powerful, language-
based approaches require additional time for debugging and error 
resolution, consuming almost half of the total programming time 
[8]. Professionals working with epidemic models are generally not 
trained in software development and thus overlook common pro-
gramming best practices including error handling, unit testing, and 
documentation, resulting in erroneous results [1, 5, 21]. This is 
further highlighted by the widespread criticism levied at an early 
study modeling the COVID-19 pandemic [19] for its “unreliable” 
and “buggy” code which led to difculties in reproducing its results 
[39]. 

Recently, considerable efort has been put into building tools 
with graphical and command-line user interfaces in order to make 
simulating epidemics accessible to people with limited program-
ming expertise and curb programming-induced errors [22]. Much 
of this efort has concentrated on building tools that focus on a 
single class of epidemics, such as infuenza. Among the tools that 
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are generic enough to simulate any epidemic, GLEaMviz [47], CMS 
[32], and STEM [18] are the most commonly used, with active 
communities. STEM, in particular, has seen vast adoption among 
epidemiologists, academics, and policy experts [17]. While these 
tools handle the task of defning and simulating epidemics well 
enough, they lack support in important aspects such as scheduling 
interventions, estimating costs, comparing policies, and automatic 
generation of intervention schedules. 

Table 1 summarizes the main diferences between EpiPolicy 
and these three state-of-the-art epidemic simulation systems. Not 
evident in this table, however, is EpiPolicy’s unique design choice 

to support collaborative teams with diferent roles 
through the explicit separation of the policymaking workfow into 
distinct pages for diferent tasks such as disease and population 
modeling, intervention specifcation and planning. Single code-base 
or workfow tools like GLEaMviz, STEM and CMS may not incur a 
‘separation overhead,’ allowing a computational epidemiologist to 
more easily set up an initial model but there is a trade-of: as the 
complexity of model, interventions, or schedules, and as the size of 
the policymaking team grow, the benefts of a single code-base or 
workfow breakdown as we describe in Section 2. 

Agent-based stochastic models. As we discussed in Section 2.2, 
agent-based models are better suited at modeling individual disease-
transmitting interactions between agents and can therefore better 
describe interventions targeted at modifying agent-behavior such 
as social distancing, isolation, etc. Some notable agent-based tools 
include EMOD [4], FRED [20], and CovidSim [19, 35]. These are 
command-line tools: they accept input confguration fles that de-
scribe the model and simulation parameters and they generate 
results in the form of various output fles. Users are able to defne a 
wide-range of agent-specifc features such as age, mortality, and 
vaccine eligibility. Stochastic agent-based models, while more ex-
pressive than deterministic compartmental models, are extremely 
computationally intensive, making it currently impractical to auto-
matically explore diferent intervention plans with techniques like 
MCTS. EpiPolicy’s abstraction design principle ( ) 
aims to better connect the ODE compartmental model to the end-
users’ mental model through the introduction of facilities where 
population groups interact within. To a certain degree, it is success-
ful in achieving this as demonstrated by some of the scenarios built 
for the feasibility studies and the focus group. Rethinking how we 
implement stochastic agent-based models to ensure scalability is a 
fundamental frst step to supporting automatic plan exploration. 

5.3 Interactive Modeling 
Interactive modelling systems have been used to simulate the efects 
of various phenomena and processes such as human behaviours 
and governmental policies: Gamette utilizes a game-based interface 
approach to model human behaviour using an agent-based model 
by segmenting a simulation study into a number of game scenarios 
that involve human users to calibrate the underlying model and to 
evaluate the behaviour of the agents [34]. Tomlinson et al. utilized 
a simulation system based on an agent-based model to understand 
the impact of Accountable Capitalism Act [46]. 

EpiPolicy is a single design point in the rich space of model-
driven policymaking support tools. While it targets the special-
ized area of epidemic control, the same framework could apply to 
other policymaking domains. For example, in a misinformation-
mitigation setting, institutional mitigators may represent some 
information access and quality measures that misinformation cam-
paigns negatively impact, and interventions such as providing infor-
mation portals, fact-checking claims, etc. improve. As in EpiPolicy, 
there are diferent populations groups with diferent vulnerabili-
ties to misinformation, media platforms resemble facilities where 
groups interact and spread (mis-)information and diferent locales 
may have diferent policies and laws. The design principles and 
many of EpiPolicy’s features such as intervention-plan optimiza-
tion can thus apply to other applications that can be described by 
state-based models and interventions. 

6 CONCLUSION 
This paper has described EpiPolicy: a tool to help formulate public 
health policies that curb disease outbreaks. EpiPolicy’s user inter-
face is divided into a series of task-oriented pages to help modelers 
through each step of the modeling process. EpiPolicy provides 
high-level abstractions that help connect how interventions work 
with the mathematical ordinary diferential equations that describe 
disease spread. It visualizes the disease model, certain population 
demographics such as mobility patterns, the schedule of interven-
tions and the results of a simulation. These visualizations help 
users understand, analyze and communicate diferent disease mod-
els and intervention policies. In EpiPolicy, the efects and costs of 
interventions are defned separately from their planning specifcs: 
when, where, and how. This ‘separation of concerns’ allows users 
to easily construct, modify, and compare multiple policies. It further 
allows EpiPolicy to generate and simulate thousands of interven-
tion schedules, with the help of Monte Carlo Tree Search, and select 
the most cost-efective ones. 

Epidemiologists appreciated how EpiPolicy surfaced the many 
parameters that described the disease, the population and the inter-
vention policy, and allowed users to easily modify these parameters. 
They also found EpiPolicy’s support for the interactive exploration 
and evaluation of diferent policies powerful. 
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