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transition through the different stages 
of disease through compartments for 
exposed, asymptomatic, pre-symp-
tomatic, mild infection, severe infec-
tion, critical infection, and recovered 
individuals. It allows for reinfection by 
a transition edge from the recovered 
compartment back to the susceptible 
compartment. Epidemiologists can 
customize the parameters of this Epi-
Policy model for different groups in the 
population, such as children, adults, 
and seniors. For example, we can 
model an epidemic in which seniors 

In many parts of the world, the COVID-19 pandemic has cost lives as well as economic 
hardship. It has included disruptive and costly interventions such as border closures, 
social distancing, and remote education. Each intervention has both benefits and costs, 
considering their respective social and economic burdens. For example, border closures 

can be effective at the start of an outbreak as they provide enough time for other less costly 
interventions to be implemented—such as enforcing mask mandates, which require time 
for both mask production and distribution. This paper presents EpiPolicy,1 a tool that 
enables users to simulate an epidemic along with mitigating interventions. This tool may 
facilitate policymakers in making evidence-based decisions for how to combat an epidemic. 

In this article, we will describe the 
motivations and inner workings of Epi-
Policy’s simulator to illustrate how one 
can conduct multiple what-if analyses 
to determine a cost-effective schedule 
of interventions.

BASICS OF EPIDEMIC MODELING
When it comes to modeling the spread 
of disease, compartmental models, 
such as the SIR (Susceptible, Infec-
tious, and Recovered) model, have 

been widely used to predict epidemic 
consequences such as how fast a dis-
ease spreads and how long the out-
break may last.2

In Figure 2, we illustrate a complex 
compartmental model for COVID-19 
with 15 compartments. It captures spe-
cific disease features based on transi-
tion rates. For example, the incubation 
period can be derived from the transi-
tion rates from exposed to infected. 
The model describes how individuals 

2 https://bit.ly/epipolicy
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different interventions often requires 
a joint team of epidemiologists, com-
putational modelers, data scientists, 
health economists, and public health 
officials. The process begins when such 
a team constructs a reasonably predic-
tive disease model representative of 
their region of interest as a function of 
its unique socioeconomic and demo-
graphic characteristics. As the team 
considers possible interventions—
such as school closures, social distanc-
ing, vaccination drives, etc.—they need 
to simultaneously model each inter-
vention’s effect on disease spread and 
economic cost. The team then engages 
in an extensive what-if analysis process 
to determine a cost-effective policy: a 
schedule of when, where and how ex-
tensively each intervention should be 
applied. This policymaking process is 
often an iterative and laborious pro-
gramming-intensive effort where pa-
rameters are introduced and refined, 
model and intervention behaviors are 
modified, and schedules changed. 

With EpiPolicy, this process is 
streamlined into well-defined steps, 
each handled by a separate UI page 

have a higher likelihood of developing 
severe and critical complications. 

Depending on the interventions and 
policies under consideration, the dis-
ease model may contain more or fewer 
compartments. For example, in Figure 
2, the hospitalization compartments 
Hmild, Hsev, and Hcr allow the modeling 
of outbreak scenarios where hospital 
capacities are exceeded and the design 
of interventions that increase hospital 
capacities. The quarantine compart-

ments Qs, QE, Qpre, and Qasym enable the 
design of interventions such as mass 
screening, contact-tracing, and isola-
tion that detect suspected cases thus 
reducing the overall disease spread in 
the population by exposed, pre-symp-
tomatic, or asymptomatic individuals. 

The model is based on a simplistic 
assumption: Vaccinated individuals 
are 100% immune to the disease. One 
can model partial immunity in vac-
cinated individuals by introducing a 
transition edge from the vaccinated 
compartment to the exposed com-
partment. All models, however, are 
approximations of reality. It is up to 
the disease modeling team to design 
a model that best reflects their current 
understanding of the disease, vaccina-
tions, and interventions as well as to 
correctly parameterize it.

MOTIVATION
As a model grows in complexity, the 
number of parameters will increase. 
More data is needed to fit the parame-
ters such as the recovery rate and mor-
tality rate. Therefore, simulating a dis-
ease like COVID-19 and the effects of 

EpiPolicy allows 
intervention 
developers to 
surface its control 
parameters  
to allow users to 
easily adjust the 
intensity or behavior 
of an intervention.

Figure 1. EpiPolicy provides a visual dashboard to explore the effects and costs of an intervention plan on the different 
administrative locales in the fictitious country of the United Provinces. Here, we see a plan with four interventions: school 
closures, mass screening with contact tracing, mask-wearing mandates, and vaccinations. In the first four months of the 
schedule, all non-pharmaceutical interventions are applied with high intensity and then relaxed for the following eight 
months. Vaccinations are administered throughout the year.
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that provides clear and well-defined 
functionality, allowing users with dif-
ferent skill sets to effectively collabo-
rate and explore different epidemic 
handling scenarios. For example, 
users with computational modeling 
experience can programmatically de-
scribe the behavior of interventions 
with respect to manipulating the 
disease models, while policymaking 
public health officials without pro-
gramming experience can modify 
and explore intervention schedules 
easily by stating when, where, and how 
intensely different interventions are 
applied. You can learn more about our 
tool at epipolicy.github.io. 

ABSTRACTIONS  
AND INTERVENTIONS
In EpiPolicy, we model the spread of 
disease through interactions between 
groups of individuals (e.g. children or 
vulnerable sub-populations, such as 
seniors) within facilities (e.g. schools, 
workplaces, or malls) spread out 
across geographic and administrative 
locales (e.g. countries, cities, or dis-
tricts). Mobility matrices describe the 
proportion of time individuals of one 
locale spend in another. For each fa-
cility, one can describe the proportion 
of time each group interacts with an-
other group (e.g. children spend 90% 
of their time interacting with other 
children within a school). These three 
abstractions—groups, facilities, and 

locales—allow the specification of dif-
ferent kinds of interventions.

For example, a border closure inter-
vention reduces the mobility between 
two locales by a certain rate. Groups al-
low the simulation of group-specific in-
terventions such as shelter-at-home for 
vulnerable sub-populations. Within 
facilities, interventions like workplace 
capacity limits reduce the amount of 
time spent by certain groups in work-
places and the degree of interaction 
with other groups. 

In EpiPolicy, each intervention is 
described by two python methods: ef-
fect and cost. An effect method usually 
modifies model parameters, popula-
tion, or mobility characteristics such 
as transmission rate or time spent by 
individuals from one locale in another. 
A cost method estimates the dollar 

cost of the social or financial burden 
of an intervention. EpiPolicy allows 
intervention developers to surface its 
control parameters to allow users to 
easily adjust the intensity or behavior 
of an intervention. For example, one 
can surface the number of available 
vaccine doses per day or a vaccine’s 
efficacy in a vaccination intervention. 
This allows users to quickly and eas-
ily increase or decrease the rate of 
vaccine administration or refine its 
efficacy based on evolving observa-
tional data. In Figure 3, we illustrate 
the effect method of a mask-wearing 
intervention. Here, we surface two con-
trol parameters for the effect method: 
compliance and the reduction in trans-
mission rate due to wearing masks. At 
100% compliance, the mask-wearing 
intervention reduces transmission by 

Figure 2. A COVID-19 compartmental model with 15 compartments that accounts for different stages of COVID-19 symptoms 
as well as vaccination (V), quarantine (Qs, QE, Qpre, Qasym), and hospitalization (Hmild, Hsev, Hcri).
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Figure 3. EpiPolicy surfaces the control parameters of the mask-wearing 
intervention. The effect method has two control parameters: compliance and 
maximum reduction in transmission rate. The cost method (not shown in the 
figure) has one control parameter: the cost per mask per day.
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each reduce the transmission rate by 
20% and 60% respectively. Then the net 
reduction in transmission if the inter-
ventions were applied simultaneously 
would be: 1-(1-0.2)*(1-0.6)=0.68 or 68% 
reduction. Indirect-effect interven-
tions, such as border closure or school 
closure, reduce the portion of time that 
individuals spend in transmission-
prone locations. In the end, the effec-
tive transmission rate is a combina-
tion of the direct and indirect effect of 
these interventions. 

EPIPOLICY IN ACTION
Let’s see how a team of public health 
officials and policymakers can use 
EpiPolicy to decide how to balance vac-
cinations with relaxing various forms 
of non-pharmaceutical interventions 
such as school closures, mass screen-
ing and contact tracing, and mask-
wearing mandates. 

Consider an outbreak in the ficti-
tious country of the United Provinces 
(UP), which has a population of roughly 
one million people and 75% of the pop-
ulation are adults or seniors. 

We will examine four specific inter-
ventions:

 ˲ School closures reduce the inter-
action between children in schools.

 ˲ Mass screening and contact trac-
ing increase the transition rate from 
non-quarantined compartments (e.g. 
pre-symptomatic, Ipre) to quarantined 
ones (e.g. Qpre), which have lower dis-
ease transmissibility rates.

 ˲ Mask-wearing mandates reduce 
the transmission rates in all facilities 

50%. The net effect of wearing masks 
is of course controlled by the degree of 
compliance by the population. Policy-
makers can control how much compli-
ance they anticipate from their com-
munity or expect to enforce.

It is often straightforward to con-
struct interventions that operate 
independently, but how would one 
quantify the reduction in transmis-
sion rate when there are multiple in-
terventions such as social distancing, 
mask enforcement, or school closure 

in place? 
In EpiPolicy, we simulate the effect 

of an intervention either “directly” or 
“indirectly.” Consider, for example, 
the transmission rate parameter. Di-
rect-effect interventions, such as so-
cial distancing or mask enforcement, 
each reduce the transmission rate 
multiplicatively by a certain percent. 
To combine several such effects, we 
simply aggregate the effects of their 
multiplicative factors. Let’s say social 
distancing and mask enforcement can 

Figure 4. The effect in terms of total number of infections, deaths, and dollar cost of relaxing the intensity of non-
pharmaceutical interventions for two vaccination drives: a fast-rate one that vaccinates at most 4,500 adults and seniors a 
day and slow-rate one that vaccinates at most 1,250 adults and seniors a day.
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Table 1. Running costs for each intervention.

Interventions Cost

School closure $1.8 per affected person per day

Mass screening and contact tracing $1.8 per affected person per day

Mask-wearing mandate $0.05 per person per day

Vaccination $40 per fully vaccinated person

Table 2. Dollar costs estimates for infections, hospitalizations, and fatalities.

Disease burden Cost

Infections $173 per infectious person per day

Hospitalizations $250 per hospitalized person per day

Fatalities $100,000 for each fatality

Table 3. The total infections, deaths, and economic cost at the end of a one-year 
simulation for the what-if scenarios under consideration by United Provinces officials.

Vaccination Drive Relaxation Degree Total Infections Total Deaths Total cost

Slow-rate 100% 659,938 591 $2,021,293,606

Fast-rate 100% 12,160 2 $326,601,453

Slow-rate 50% 5,818 7 $380,876,861

Fast-rate 50% 419 2 $479,086,269
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EpiPolicy to automate the search pro-
cess for good intervention plans.

CONCLUSION
These examples illustrate how EpiPoli-
cy can simulate a variety of what-if sce-
narios. The overall purpose of EpiPolicy 
is to support the policymaking process 
by enabling effective intervention plan-
ning discussions that are not hampered 
by code complexity, hidden parameters, 
or slow turnaround times when explor-
ing alternatives. Given good data, clever 
planners, and political leadership re-
sponsive to science, future pandem-
ics can be handled at less cost in life 
and treasure using tools like EpiPolicy. 
Computer scientists have a lot to bring 
to this very real-world application such 
as designing novel, algorithmic ap-
proaches to search for good interven-
tion plans; developing high perfor-
mance systems that can run millions 
of simulations and what-if analysis in-
teractively; and designing collaborative 
and effective interfaces that support 
the complex process of policymaking to 
curb epidemics.
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except households because people 
don’t wear masks in their homes. 

 ˲ Vaccination moves individuals 
from the susceptible to the vaccinated 
compartment. 

We simulate the effect of these in-
terventions over one year from Janu-
ary 1st to December 31st. All interven-
tions start on January 1st and last for 
four months with high intensity. We 
then explore the effect of relaxing to 
various degrees the non-pharmaceu-
tical interventions until the end of 
the year. The higher the degree of re-
laxation, the less intensive these non-
pharmaceutical interventions are. For 
example, with 100% relaxation every-
thing returns to normal, meaning no 
further non-pharmaceutical interven-
tions will be implemented. On the 
other hand, 0% relaxation implies all 
non-pharmaceutical interventions re-
main in force. 

The vaccination drive runs through-
out the year. The officials of UP wish to 
examine the impact of two vaccination 
drives: an aggressive, fast-rate drive 
where at most 4,500 adults or seniors 
are vaccinated every day, and a slow-
rate one where at most 1,250 adults or 
seniors are vaccinated every day. The 
fast-rate drive vaccinates 70% of the 
adult and senior population within the 
first four months, while the slow-rate 
one only vaccinates 20% of adults and 
seniors within the same period. The 
fast-rate drive, however, comes with an 
added cost of 100 million dollars to set 
up the necessary distribution facilities 
and to secure a sufficient supply.

Tables 1 and 2 summarize the run-
ning dollar costs for implementing 
each intervention and the costs as-
sociated with the disease burden. For 
example, the cost of wearing a mask 
by an individual is $0.05 a day and the 
cost of a hospital stay is $250 per indi-
vidual per day. These figures are purely 
illustrative and fictitious. A thorough 
region-specific, data-driven analysis is 
often required to determine appropri-
ate intervention and disease burden 
cost estimates. 

Determining which vaccination 
drive to choose is complicated by 
choice of how much to relax the other 
interventions. Policymakers often 
engage in a series of what-if analyses 
to determine a suitable intervention 

plan. Our officials at UP pose the fol-
lowing what-if questions:

What if we opt for: 
 ˲ the cheaper slow-rate vaccina-

tion drive and relax the intensity of all 
other interventions by 100% (complete 
return to normal) by May?

 ˲ the more-expensive fast-rate vac-
cination drive and relax the inten-
sity of all other interventions by 100% 
(complete return to normal) by May?

 ˲ the slow-rate drive but only relax 
the intensity of the other interventions 
by 50% by May?

 ˲ the fast-rate drive but only relax 
the intensity of the other interventions 
by 50% by May?

EpiPolicy enables UP’s officials to 
quickly conduct such what-if analysis 
scenarios and compare the results of 
different intervention plans. Figure 1 
shows EpiPolicy’s visual dashboard 
for viewing the detailed results for 
scenario three of the four what-if 
analysis scenarios. Table 3 compares 
their outcomes in terms of total in-
fections, deaths, and economic cost. 
From a dollar-cost economic per-
spective, a fast rate of vaccination 
with a complete return to normal 
appears to be the most economically 
promising intervention plan. Howev-
er, a slower rate of vaccination needs 
to be balanced by applying other non-
pharmaceutical interventions for a 
longer period with higher intensity 
(50% relaxation only).

One can explore other degrees of 
relaxation to better establish the rela-
tionship between the degree of relax-
ation, vaccination rate, and the over-
all disease and economic burden for 
different intervention plans. Figure 
4 illustrates the outbreak can still be 
cost-effectively contained in UP with 
a slow vaccination rate if other non-
pharmaceutical interventions are in-
tensely applied.

Policymaking for epidemic control 
involves exploring the trade-offs of 
many intervention plans. This makes 
the process amenable to many com-
putational optimization strategies 
that search for optimal plans to reduce 
overall infections and deaths while 
minimizing economic costs. We are 
currently exploring different optimi-
zation strategies including reinforce-
ment-learning approaches to allow 




